分析 画出可行域,利用目标函数对应的直线在y轴上的截距求最大值.
解答
解:约束条件$\left\{\begin{array}{l}{x+2y≤8}\\{x≤4}\\{y≤3}\end{array}\right.$,满足的可行域如图:
当直线y=-$\frac{2}{3}$x+$\frac{z}{3}$经过图中A时z最大,
由$\left\{\begin{array}{l}{x=4}\\{x+2y=8}\end{array}\right.$得到A(4,2),
所以z的最大值为:2×4+3×2=14;
给答案为:14.
点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 7 | C. | 4 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2($\overrightarrow{a}$+$\overrightarrow{b}$) | B. | 2($\overrightarrow{a}$-$\overrightarrow{b}$) | C. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$) | D. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l⊥g,且l与圆相交 | B. | l⊥g,且l与圆相离 | C. | l∥g,且l与圆相交 | D. | l∥g,且l与圆相离 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | -$\frac{π}{12}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| t | 4 | 3 | 6 | 7 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com