精英家教网 > 高中数学 > 题目详情
12.为应对电信诈骗,工信部对微信、支付宝等网络支付进行规范,并采取了一些相应的措施.为了调查公众对这些措施的看法,某电视台法制频道节目组从2组青年组,2组中年组,2组老年组中随机抽取2组进行采访了解,则这2组不含青年组的概率为$\frac{2}{5}$.

分析 设2组青年组的编号分别为1,2,2组中年组的编号分别为3,4,2组老年组的编号分别为5,6,利用列举法求出从中两组所有的情况有15种,其中不含青年组的有6种,由此能求出这2组不含青年组的概率.

解答 解:设2组青年组的编号分别为1,2,
2组中年组的编号分别为3,4,
2组老年组的编号分别为5,6,
则从中两组所有的情况有15种,分别为:
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),
(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),
其中不含青年组的有6种,故所求概率为:
p=$\frac{6}{15}$=$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 本题考查概率的求法,考查古典概型、列举法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}+{x^2}-3x+4$.
(1)求f(x)的单调区间;
(2)求f(x)的极大值与极小值;
(3)写出利用导数方法求函数极值点的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.当x>0时,不等式x+$\frac{1}{x}$≥a恒成立,则实数a的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,若平面向量$\overrightarrow{p}$满足$\overrightarrow{p}$•$\overrightarrow{a}$=$\overrightarrow{p}$•$\overrightarrow{b}$=-$\frac{1}{2}$,则|$\overrightarrow{p}$|=(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-2|.
(1)求不等式f(x)≤5-|x-1|的解集;
(2)若函数g(x)=$\frac{1}{x}$-f(2x)-a的图象在($\frac{1}{2}$,+∞)上与x轴有3个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设两个非零向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若$\overrightarrow{a}$与$\overrightarrow{b}$的起点相同,且$\overrightarrow{a}$,t$\overrightarrow{b}$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$)的终点在同一条直线上,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在长方形ABCD中,对角线BD与两邻边所成的角分别为α,β则cos2α+cos2β=1.仿此,在长方体ABCD-A′B′C′D′中,下列结论正确的是(  )
A.若对角线BD′与面ABC,面ABB′,面BCB′所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1
B.若对角线BD′与面ABC,面ABB′,面BCB′所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2
C.若对角线BD′与三条棱AB,BC,BB′所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2
D.以上类比结论均错误.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,若复数-i(a+i)(a∈R)的实部与虚部相等,则a=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤8}\\{x≤4}\\{y≤3}\end{array}\right.$,则目标函数z=2x+3y的最大值为14.

查看答案和解析>>

同步练习册答案