精英家教网 > 高中数学 > 题目详情
如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明.
(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,记直线DF与平面ABC所成的角为θ,直线DF与直线BD所成的角为α,二面角E-BD-C的大小为β,求证:sinθ=sinαsinβ.
考点:与二面角有关的立体几何综合题,空间中直线与平面之间的位置关系
专题:空间角
分析:(I)由已知条件推导出EF∥AC,从而得到EF∥平面ABC,由此能证明l∥平面PAC.
(II)过B作AC的平行线BD,交线l即为直线BD,且l∥AC,由已知条件推导出∠CBF=β,∠CDF=θ,∠BDF=α,由此能证明sinθ=sinαsinβ.
解答: (I)解:∵E,F分别是PA,PC的中点,
∴EF∥AC,∵AC?平面ABC,EF不包含于平面ABC,
∴EF∥平面ABC.
又∵EF?平面BEF,平面BEF∩平面ABC=l
∴EF∥l,∴l∥平面PAC.…(4分)
(II)证明:如图,过B作AC的平行线BD,
由(I)知,交线l即为直线BD,且l∥AC.
∵AB是⊙O的直径,∴AC⊥BC,于是BD⊥BC.
∵PC⊥平面ABC,∴PC⊥BD,
∴BD⊥平面PBC.连接BE,BF,则BD⊥BF.
∴∠CBF就是二面角E-BD-C的平面角,即∠CBF=β.…(7分)
连结CD,∵PC⊥平面ABC,∴CD就是FD在平面ABC内的射影,
∴∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.
又∵BD⊥平面PBC,∴BD⊥BF,则∠BDF为锐角,∠BDF=α.…(9分)
∴在Rt△CDF,Rt△BDF,Rt△BCF中,分别得
sinθ=
CF
DF
,sinα=
BF
DF
,sinβ=
CF
BF

∴sinαsinβ=
BF
DF
CF
BF
=
CF
DF
=sinθ,
∴sinθ=sinαsinβ.…(12分)
点评:本题考查直线与平面的位置关系的判断与证明,考查三角函数正弦值相等的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+3x+1
x+1
有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在菱形ABCD中,AB=BD=2,三角形PAD为等边三角形.将它沿AD折成大小为α(
π
2
<α<π)的二面角P-AD-B,连接PC、PB.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)当α为何值时,二面角P-CD-A的平面角的正切值大小为2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AECM⊥平面PDB.
(2)若E是PB的中点,且AE与平面PBD所成的角为45°时,求二面角B-AE-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为非零实数,且a2+b2+c2+1-m=0,
1
a2
+
4
b2
+
9
c2
+1-2m=0.
(1)求证
1
a2
+
4
b2
+
9
c2
36
a2+b2+c2

(2)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形的边长为3
5

(1)判断直线BO与直线AE是否平行,只写出结果,不要求说明理由;
(2)求证:CD⊥平面ADE;
(3)求二面角B-DE-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点A(0,3),设圆C的半径为1,圆心在直线l:y=2x-4上.
(1)若圆心C也在直线y=x-1上,过点B(2,4)作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2-mx-m<0”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=λ|
a
+
b
|,且实数λ∈[
3
3
,1],则
b
a
-
b
的夹角取值范围是
 

查看答案和解析>>

同步练习册答案