精英家教网 > 高中数学 > 题目详情
下列函数是奇函数的是(  )
A、f(x)=-|x|
B、f(x)=lg(1+x)-lg(1-x)
C、f(x)=2x+2-x
D、f(x)=x3-1
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:先看定义域是否关于原点对称,再看f(-x)与f(x)的关系,从而根据奇函数、偶函数的定义作出判断.
解答: 解:对于函数f(x)=-|x|,由于f(-x)=-|-x|=-|x|=f(x),故函数f(x)为偶函数.
对于f(x)=lg(1+x)-lg(1-x),它的定义域为(-1,1),
且满足f(-x)=lg(1-x)-lg(1+x)=-f(x),故函数f(x)为奇函数.
对于函数f(x)=2x+2-x,由于f(-x)=2x+2-x=f(x),故函数f(x)为偶函数.
对于函数f(x)=x3-1,由于f(-x)=-x3-1≠-f(x),故不是奇函数,
故选:B.
点评:本题主要考查函数的奇偶性的判断方法,先看定义域是否关于原点对称,再看f(-x)与f(x)的关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°
(Ⅰ)证明AD⊥PB;
(Ⅱ)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=
|x|
|x|-1
给出下列四个命题:
①当x>0时,y=f(x)单调递减且没有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,则解的个数一定是偶数;
④y=f(x)是偶函数且有最小值.则其中真命题是
 
.(只要写标题号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U是实数集R,集合M={x|x2>2x},N={x|log2(x-1)≤0},则(∁UM)∩N为(  )
A、{x|1<x<2}
B、{x|1≤x≤2}
C、{x|1<x≤2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设D是图中边长为2的正方形区域,E是函数y=x3的图象与x轴及x=±1围成的阴影区域.向D中随机投一点,则该点落入E中的概率为(  )
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈N|0<x<3},B={x|2x-1>1},则A∩B=(  )
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC内一点,若
OA
+2
OB
+3
OC
=
0
,则△AOC与△ABC的面积的比值为(  )
A、
1
2
B、
1
5
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x>0时,f(x)=
1+lnx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)上存在极值点,求实数a的取值范围;
(2)若x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)试证明:ln(n+1)>n-2 (
1
2
+
2
3
+
3
4
+…+
n
n+1
)(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+m与椭圆
x2
4
+y2=1相交于A、B两点,m为变量,求|AB|的最大值.

查看答案和解析>>

同步练习册答案