【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2sin Acos C=2sin B-sin C.
(1)求A的大小;
(2)在锐角三角形ABC中, ,求c+b的取值范围.
【答案】(1) A= (2) (,2]
【解析】试题分析:(1) 2sin Acos C=2sin B-sin C.根据内角和 可把sinB换成sin(A+C)展开即得2cos Asin C=sin C,消去sinC,即得cos A=,从而得A.(2)根据第一问得出的A=,由正弦定理得出,所以c+b=2sin C+2sin B=2sin B+2sin=2sin,由锐角三角形得出,即得解.
试题解析:
(1) B=π-(A+C),2sin Acos C=2sin B-sin C=2sin Acos C+2cos Asin C-sin C, 2cos Asin C=sin C. sin C≠0, cos A= .
由A∈(0,π),可得A= .
(2) 在锐角三角形ABC中, 由(1)可得A=,B+C=
∴由正弦定理可得: ,∴c+b=2sin C+2sin B=2sin B+2sin =3sin B+cos B=2sin . ,可得, ,sin 可得b+c=2sin∈(,2].
科目:高中数学 来源: 题型:
【题目】已知圆C的方程为:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y﹣6=0交于M、N两点,且|MN|=2 ,求m的值;
(3)设直线x﹣y﹣1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是(为参数).
(1)求直线和曲线的普通方程;
(2)设直线和曲线交于两点,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )
A.18
B.24
C.36
D.48
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ex﹣alnx(其中a∈R,e为自然常数)
①a∈R,使得直线y=ex为函数f(x)的一条切线;
②对a<0,函数f(x)的导函数f′(x)无零点;
③对a<0,函数f(x)总存在零点;
则上述结论正确的是 . (写出所有正确的结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx﹣a+2
(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;
(2)若b=2,a>0,解关于x的不等式f(x)>0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com