精英家教网 > 高中数学 > 题目详情

【题目】△ABC,a,b,c分别为内角A,B,C的对边,2sin Acos C=2sin B-sin C.

(1)A的大小;

(2)在锐角三角形ABC, c+b的取值范围.

【答案】(1) A= (2) (,2]

【解析】试题分析:(1) 2sin Acos C=2sin B-sin C.根据内角和 可把sinB换成sinA+C)展开即得2cos Asin C=sin C消去sinC,即得cos A=从而得A.(2)根据第一问得出的A=由正弦定理得出,所以c+b=2sin C+2sin B=2sin B+2sin=2sin,由锐角三角形得出,即得解.

试题解析:

(1) B=π-(A+C),2sin Acos C=2sin B-sin C=2sin Acos C+2cos Asin C-sin C, 2cos Asin C=sin C. sin C≠0, cos A= .

A(0,π),可得A= .

(2) 在锐角三角形ABC, (1)可得A=,B+C=

由正弦定理可得: c+b=2sin C+2sin B=2sin B+2sin =3sin B+cos B=2sin . ,可得 sin 可得b+c=2sin(,2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y﹣6=0交于M、N两点,且|MN|=2 ,求m的值;
(3)设直线x﹣y﹣1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(
A.18
B.24
C.36
D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(1)求不等式的解集

(2)证明对于任意的 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点O轴正半轴为极轴,已知点P的直角坐标为(1,-5),C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.

(1).求直线l的参数方程及圆C的极坐标方程;

(2).试判断直线l与圆C有位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点O轴正半轴为极轴,已知点P的直角坐标为(1,-5),C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.

(1).求直线l的参数方程及圆C的极坐标方程;

(2).试判断直线l与圆C有位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ex﹣alnx(其中a∈R,e为自然常数)
a∈R,使得直线y=ex为函数f(x)的一条切线;
②对a<0,函数f(x)的导函数f′(x)无零点;
③对a<0,函数f(x)总存在零点;
则上述结论正确的是 . (写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx﹣a+2
(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;
(2)若b=2,a>0,解关于x的不等式f(x)>0.

查看答案和解析>>

同步练习册答案