【题目】已知椭圆
的左、右焦点分别为
、
,点
在椭圆上,有
,椭圆的离心率为
;
(1)求椭圆
的标准方程;
(2)已知
,过点
作直线
与椭圆交于
不同两点,线段
的中垂线为
,线段
的中点为
点,记
与
轴的交点为
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】(本题满分14分)
已知椭圆C:
过点
,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)
是椭圆C的两个焦点,⊙O是以F1F2为直径的圆,直线l: y=kx+m与⊙O相切,并与椭圆C交于不同的两点A、B,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知椭圆
的离心率为
,左、右焦点分别是
,以
为圆心以3为半径的圆与以
为圆心以1为半径的圆相交,且交点在椭圆
上.
(1)求椭圆
的方程;
(2)过椭圆
上一动点
的直线
,过F2与x轴垂直的直线记为
,右准线记为
;
①设直线
与直线
相交于点M,直线
与直线
相交于点N,证明
恒为定值,并求此定值。
②若连接
并延长与直线
相交于点Q,椭圆
的右顶点A,设直线PA的斜率为
,直线QA的斜率为
,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:
(a>b>0)的左、右焦点分别为
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为
,直线MB的斜率为
,证明
为定值,并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com