精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+ax2+bx.
(1)如果函数f(x)在x=1处取得极值0,求实数a、b的值;
(2)若b=-2a-1,求函数f(x)的单调区间.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(1)由题意求导,从而可得
0+a+b=0
1+2a+b=0
,从而求实数a、b的值;
(2)写出函数的定义域,求导f′(x)=
1
x
+2ax-2a-1=
2ax2-(2a+1)x+1
x
=
(2ax-1)(x-1)
x
,讨论a的取值范围,从而确定导数的正负,再确定函数的单调区间.
解答: 解:(1)∵f(x)=lnx+ax2+bx,
∴f′(x)=
1
x
+2ax+b,
0+a+b=0
1+2a+b=0

解得,a=-1,b=1;
(2)由题意,函数f(x)=lnx+ax2-(2a+1)x的定义域为(0,+∞),
f′(x)=
1
x
+2ax-2a-1=
2ax2-(2a+1)x+1
x
=
(2ax-1)(x-1)
x

①当a≤0时,2ax-1<0,
故函数f(x)的单调增区间为(0,1),单调减区间为[1,+∞);
②当0<2a<1,即0<a<
1
2
时,
函数f(x)的单调增区间为(0,1),[
1
2a
,+∞)单调减区间为[1,
1
2a
);
③当2a=1,即a=
1
2
时,
函数f(x)的单调增区间为(0,+∞);
④当2a>1,即a>
1
2
时,
故函数f(x)的单调增区间为(0,
1
2a
),(1,+∞),单调减区间为[
1
2a
,1].
点评:本题综合考查了导数的应用,同时考查了分类讨论的数学思想,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点分别为F1、F2,过F1作直线交双曲线的左支于A、B两点,且|AB|=m,则△ABF2的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
25-x2
+tanx的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,1),B(2,-3),在坐标轴上求一点P,使∠APB=90°,并求出线段AB的垂直平分线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,E、F分别是AB、AC的中点,过直线EF做平面α,分别交BD于M、交CD于N.求证:EF∥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足1=a1≤a2≤…≤an≤…,数列{bn}满足bn=
an
an+1
1
an
-
1
an+1
),Sn为数列{bn}的前n项和,证明:
(1)对于n∈N*,0≤Sn<2;
(2)对于任意c∈[0,2),存在数列{an}使关于n的不等式Sn>c有无数个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为4的正方体ABCD-A1B1C1D1中,M、N分别是棱AB、BC上的点,且BM=BN,点P是棱A1D1上一点,A1P=1,过P、M、N的平面与棱C1D1交于点Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x+4,令Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)+f(1).
(1)求Sn
(2)设bn=
an
Sn
(a∈R)且bn<bn+1对所有正整数n恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C的圆心在曲线y=
2
x
上,⊙C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是(  )
A、2B、3C、4D、8

查看答案和解析>>

同步练习册答案