精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=ax-ex(a>0).
(Ⅰ)求曲线在点(0,f(0))处的切线;
(Ⅱ)若存在实数x0使得f(x0)≥0,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)求出原函数的导函数,得到f′(0)的值,再求出点的坐标,由点斜式得到切线方程;
(Ⅱ)由导函数的符号确定函数的单调区间,从而求得函数的最大值,由最大值大于等于0求得a的范围.
解答: 解:(Ⅰ)∵f(x)=ax-ex(a>0),
∴f(0)=-1,则切点为(0,-1).
f′(x)=a-ex,f′(0)=a-1,
∴曲线在点(0,f(0))处的切线方程为:y=(a-1)x-1;
(Ⅱ)∵a>0,由f′(x)>0得,x<lna,
由f′(x)<0得,x>lna,
∴函数f(x)在(-∞,lna)上单调递增,在(lna,+∞)上单调递减,
∴f(x)的最大值为f(lna)=alna-a.
∵存在x0使得f(x0)≥0,
∴alna-a≥0,
∴a≥e.
点评:本题考查利用导数研究曲线上某点的切线方程,考查了利用导数求函数的最值,体现了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知函数f(x)是定义在实数集R上的以2为周期的偶函数,当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是(  )
A、-
1
4
或-
1
2
B、0
C、0或-
1
2
D、0或-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,1),
b
=(x,y).
(Ⅰ)若x,y分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足
a
b
=-1的概率.
(Ⅱ)若x,y在连续区间[1,6]上取值,求满足
a
b
<0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设函数f(x)=|x+1|+|x-5|,x∈R,如果关于x的不等式f(x)≥a-(x-2)2在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C1⊥平面ABB1A1
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并求此时二面角A1-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设公差不为零的等差数列{an}的各项均为整数,Sn为其前n项和,且满足
a2a3
a1
=-
5
4
S7=7

(1)求数列{an}的通项公式;
(2)试求所有的正整数m,使得
am+1am+2
am
为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

当0<x<4时,y=2x•(8-2x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的值域是[-2,3],则函数y=f2(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是半径为1的圆周上一定点,P是圆周上一动点,则弦PA<1的概率是(  )
A、
1
3
B、
2
3
C、
1
6
D、
1
2

查看答案和解析>>

同步练习册答案