精英家教网 > 高中数学 > 题目详情
10.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM为等腰三角形,且顶角θ满足cosθ=-$\frac{1}{3}$,则E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 根据△ABM是顶角θ满足cosθ=-$\frac{1}{3}$的等腰三角形,得出|BM|=|AB|=2a,cos∠MBx=$\frac{1}{3}$,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.

解答 解:不妨取点M在第一象限,如右图:
∵△ABM是顶角θ满足cosθ=-$\frac{1}{3}$的等腰三角形,
∴|BM|=|AB|=2a,cos∠MBx=$\frac{1}{3}$,
∴点M的坐标为(a+$\frac{2a}{3}$,2a•$\frac{2\sqrt{2}}{3}$),即($\frac{5a}{3}$,$\frac{4\sqrt{2}a}{3}$),
又∵点M在双曲线E上,
∴将M坐标代入坐标得$\frac{25}{9}$-$\frac{32{a}^{2}}{9{b}^{2}}$=1,
整理上式得,b2=2a2
而c2=a2+b2=3a2
∴e2=$\frac{{c}^{2}}{{a}^{2}}$=$\sqrt{3}$,
因此e=$\sqrt{3}$,
故选:C.

点评 本题主要考查了双曲线的简单几何性质:离心率,灵活运用三角函数的定义是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知${C}_{n}^{0}$,${C}_{n}^{1}$,${C}_{n}^{2}$,…,${C}_{n}^{n}$中最大值的项只有${C}_{n}^{5}$,则${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=(  )
A.25B.28C.29D.210

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.中心在原点,焦点在y轴上,虚轴长为$4\sqrt{2}$并且离心率为3的双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{4}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线的夹角为90°,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过等腰梯形ABCD的上底的两个顶点C、D,下底的两个顶点A、B分别为双曲线的左、右焦点,对角线AC与双曲线的左支交于点E,且3|AE|=2|EC|,|AB|=2|CD|,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左,右焦点分别为F1,F2,过F2且倾斜角为45°的直线,双曲线右支交于A,B两点,若△ABF1为等腰三角形,则该双曲线的离心率为$\frac{\sqrt{14}+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C的离心率为$\sqrt{3}$,焦点为F1,F2,点A在曲线C上,若|F1A|=3|F2A|,则cos∠AF2F1=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F1(0,-c)(c>0),离心率为e,过F1平行于双曲线渐近线的直线与圆x2+y2=c2交于另一点P,且点P在抛物线x2=4cy上,则e2=(  )
A.$\frac{\sqrt{5}+2}{2}$B.$\frac{\sqrt{5}+2}{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{5}+1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$D(x)=\left\{\begin{array}{l}1,x∈Q\\ 0,x∈{C_R}Q\end{array}\right.$,现有如下论述:
(1)D(x)的值域为{0,1};(2)D(x)是偶函数;(3)D(x+1)=D(x);(4)D(x)是单调函数;
上述结论正确的序号有(1)(2)(3).

查看答案和解析>>

同步练习册答案