精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°.

分析 直接利用向量垂直的体积转化为数量积为0,然后求解即可.

解答 解:向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,
可得($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=0,即$\overrightarrow{a}•\overrightarrow{b}-{\overrightarrow{b}}^{2}=0$,
可得2$\sqrt{2}$$cos<\overrightarrow{a},\overrightarrow{b}>$-2=0,
$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\sqrt{2}}{2}$,
所以$<\overrightarrow{a},\overrightarrow{b}>$=45°
故答案为:45°.

点评 本题考查向量的数量积的应用,向量的夹角的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.化简:cos2($\frac{π}{4}$-α)-sin2($\frac{π}{4}$-α)=sin2α..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,函数f(x)=loga(x+1)在区间(-1,+∞)上递减,求证:对于任意实数x1>0,x2>0,恒有$\frac{1}{2}$[f(x1-1)+f(x2-1)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,t为正实数,函数f(x)=x2-2x+a,且对任意的x∈[0,t],都有f(x)∈[-a,a].若对每一个正实数a,记t的最大值为g(a),则函数g(a)的值域为(0,1)∪{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ex-x,命题p:?x∈R,f(x)>(0),则(  )
A.p是真命题,¬p:?x0∈R,f(x0)<0B.p是真命题,¬p:?x0∈R,f(x0)≤0
C.p是假命题,¬p:?x0∈R,f(x0)<0D.p是假命题,¬p:?x0∈R,f(x0)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}满足2nan+1=(n+1)an(n∈N*),且a1,1,4a3成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{an}满足bn=sin(πan),Sn为数列{bn}的前n项和,求证:对任意n∈N*,Sn<2+π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2+ax-2b,若a,b都是区间[0,4]内的数,则使f(1)<0成立的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在R上的函数f(x)满足:f(x)>1且f(x)+f′(x)>1,f(0)=5,其中f′(x)是f(x)的导函数,则不等式ln[f(x)-1]>ln4-x的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=sin(2x-$\frac{π}{6}$)的图象与函数y=cos(x-$\frac{π}{3}$)的图象(  )
A.有相同的对称轴但无相同的对称中心
B.有相同的对称中心但无相同的对称轴
C.既有相同的对称轴也有相同的对称中心
D.既无相同的对称中心也无相同的对称轴

查看答案和解析>>

同步练习册答案