精英家教网 > 高中数学 > 题目详情
16.已知a>0且a≠1,函数f(x)=loga(x+1)在区间(-1,+∞)上递减,求证:对于任意实数x1>0,x2>0,恒有$\frac{1}{2}$[f(x1-1)+f(x2-1)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$-1)

分析 由条件,结合对数函数的性质,可得0<a<1,运用作差法和对数的运算性质,结合基本不等式和对数函数的单调性,即可得证.

解答 证明:函数f(x)=loga(x+1)在区间(-1,+∞)上递减,
即有0<a<1,
对于任意实数x1>0,x2>0,
$\frac{1}{2}$[f(x1-1)+f(x2-1)]-f($\frac{{x}_{1}+{x}_{2}}{2}$-1)=$\frac{1}{2}$(logax1+logax2)-loga$\frac{{x}_{1}+{x}_{2}}{2}$
=loga$\sqrt{{x}_{1}{x}_{2}}$-loga$\frac{{x}_{1}+{x}_{2}}{2}$,
由于$\frac{{x}_{1}+{x}_{2}}{2}$≥$\sqrt{{x}_{1}{x}_{2}}$,
又0<a<1,
则loga$\sqrt{{x}_{1}{x}_{2}}$≥loga$\frac{{x}_{1}+{x}_{2}}{2}$,
则有$\frac{1}{2}$[f(x1-1)+f(x2-1)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$-1),
当且仅当x1=x2取得等号.

点评 本题考查对数函数的单调性的运用,同时考查对数的运算性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数f(x),满足f(x+1)=2f(x),已知x∈[-1,0],f(x)=x2+x,当x∈[1,2]时,f(x)≤logm恒成立,则实数m的取值范围是(  )
A.m≤1B.0<m≤1C.m≥1D.0<m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点在直线l:x-1=0上,且离心率e为$\frac{1}{2}$.
(1)求该椭圆的方程;
(2)若P与Q是该椭圆上不同的两点,且弦PQ的中点T在直线l上,试证:x轴上存在点R,对于所有满足条件的P与Q,恒有|RP|=|RQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.长方体的体积公式为V=Sh,柱体的体积公式为V=Sh,锥体的体积公式为V=$\frac{1}{3}$Sh.若给出原理“两等高的几何体,若被平行于底面的平面所截的截面积相等,则这两个几何体的体积相等”.试用上述知识解释球的体积公式V球=$\frac{4}{3}$πR3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系中,曲线x2-2y2-3x=0经过一个伸缩变换后变成曲线4x′2-y′2-6x′=0,则该伸缩变换是$\left\{\begin{array}{l}{x′=\frac{x}{2}}\\{y′=\sqrt{2}y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数y=f(x)的图象是连续不断的,且满足f(3-x)=f(x),当x≠$\frac{3}{2}$时总有(x-$\frac{3}{2}$)f′(x)>0(f′(x)是f(x)的导函数),若x1<x2,且x1+x2>3,则(  )
A.f(x1)>f(x2B.f(x1)<f(x2
C.f(x1)=f(x2D.f(x2)与f(x2)的大小无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将射线y=$\frac{1}{7}$x(x≥0)绕着原点逆时针旋转$\frac{π}{4}$后所得的射线经过点A=(cosθ,sinθ).
(Ⅰ)求点A的坐标;
(Ⅱ)若向量$\overrightarrow{m}$=(sin2x,2cosθ),$\overrightarrow{n}$=(3sinθ,2cos2x),求函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-5≥0}\\{y-3≤0}\end{array}\right.$,若不等式m(x2+y2)≤(x+y)2恒成立,则实数m的最大值是$\frac{25}{13}$.

查看答案和解析>>

同步练习册答案