精英家教网 > 高中数学 > 题目详情
18.如果对?x,y∈R都有f(x+y)=f(x)•f(y),且f(1)=2.
(1)求f(2),f(3),f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$的值.

分析 (1)令x=1,y=1,求出f(2),令x=2,y=1,求出f(,3),令x=3,y=1求出f(4);
(2)由$\frac{f(2n)}{f(2n-1)}$=f(1)=2,即可求出所求的和.

解答 解:(1)令x=1,y=1,则f(2)=f(1)•f(1),
由于f(1)=2,则f(2)=4;
令x=2,y=1,则f(3)=f(2)•f(1)=8;
令x=3,y=1,则f(4)=f(3)•f(1)=16.
(2)∵对任意的x,y∈R都有f(x+y)=f(x)•f(y),且f(1)=2,
∴$\frac{f(2)}{f(1)}$=2,$\frac{f(4)}{f(3)}$=2,…,$\frac{f(2n)}{f(2n-1)}$=f(1)=2,
∴$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$=1007f(1)=2014.

点评 本题考查抽象函数及应用,考查解决抽象函数的常用方法:赋值法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\frac{{x}^{2}}{2x-2}$,且4Sn•f($\frac{1}{{a}_{n}}$)=1,bn=-an•($\frac{1}{2}$)n,Tn为{bn}的前n项和,比较Tn与$\frac{1}{2}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:△ABC中,sinA•cos2$\frac{C}{2}$+sinC•cos2$\frac{A}{2}$=$\frac{3}{2}$sinB,求证:sinA+sinC=2sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P为曲线xy-2x-2y+8=0上任意一点,O为坐标原点,则|OP|的最小值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三个顶点为A(2,2),B(-4,6),C(-3,-2),试求三条边上中线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知y=(cosx-a)2-1,当cosx=-1时,y取最大值,当cosx=a时,y取最小值,则实数a的范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)是R上的函数,且满足f(1)=0并且对任意的实数x、y都有f(x+y)-f(y)=x(x+2y+1),求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{x-1}{x+1}$(x≠±1).则正确的选项是(  )
A.f(x)+f(-x)=1B.f(x)+f(-x)=0C.f(x)•f(-x)=-1D.f(x)•f(-x)=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=2x+cosx+sinx,a=f′($\frac{π}{2}$),f′(x)是函数f(x)的导函数.则过曲线y=x3上一点P(a,b)的切线方程为y=x.

查看答案和解析>>

同步练习册答案