精英家教网 > 高中数学 > 题目详情
2.将直线y=x-1绕它上面一点(1,0)沿逆时针方向旋转15°,则所得直线方程为$\sqrt{3}x$-y-$\sqrt{3}$=0.

分析 由直线y=x-1,可得倾斜角为45°.直线y=x-1绕它上面一点(1,0)沿逆时针方向旋转15°,可得旋转后的直线倾斜角为60°,其斜率=tan60°,即可得出.

解答 解:由直线y=x-1可得:直线的斜率k=1,设倾斜角为α,则tanα=1,解得α=45°.
直线y=x-1绕它上面一点(1,0)沿逆时针方向旋转15°,可得旋转后的直线倾斜角为60°,其斜率=tan60°=$\sqrt{3}$.
因此所得直线方程为:y-0=$\sqrt{3}$(x-1),化为$\sqrt{3}x$-y-$\sqrt{3}$=0,
故答案为:$\sqrt{3}x$-y-$\sqrt{3}$=0.

点评 本题考查了直线的点斜式方程、斜率与倾斜角的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知F为抛物线y2=2px(p>0)的焦点,AB为抛物线的过焦点的弦,C为抛物线的准线与对称轴的交点.若以AC为直径的圆恰过点B,则|AF|-|BF|的值为2p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)写出两个平面向量的夹角的定义和两个平面向量数量积的定义;
(2)写出两角差得余弦公式并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出以下四个命题:
①一个底面半径为1,母线长为2的圆锥的表面积为3π;
②设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=-$\frac{2\sqrt{5}}{5}$;
③已知数列{an}是等差数列,若它的前n项和Sn有最小值,且$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,则使Sn>0成立的最小自然数为19;
④函数f(x)=|lgx|,若0<m<n,且f(m)=f(n),则m+2n的取值范围为[2$\sqrt{2}$,+∞);
其中正确的命题有①②(请将满足题意的序号填写在答题卷中的横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足f(2)=$\frac{1}{5}$,且对任意x∈R都有f(x+3)=-$\frac{1}{f(x)}$,则f(2015)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=asinωx+$\sqrt{3}cosωx(a<0,\frac{1}{6}<ω<\frac{1}{3})$,f(x)的最大值为2,过点($\frac{5π}{3}$,0)
(1)求a,ω的值;
(2)设α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5π}{3}$)=-$\frac{6}{5}$,f(5β-$\frac{5π}{3}$)=$\frac{16}{17}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在其定义域内为偶函数且有最小值的是(  )
A.f(x)=2xB.f(x)=2|x|+x2C.f(x)=$\frac{1}{{2}^{x}}$+x3D.f(x)=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{6-bi}{1+2i}$=2-2i(i为虚数单位),则实数b=(  )
A.3$\sqrt{2}$B.-6C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c.若△ABC的外接圆的半径R=$\sqrt{3}$,且$\frac{cosC}{cosB}$=$\frac{2a-c}{b}$,分别求出B和b的大小.

查看答案和解析>>

同步练习册答案