精英家教网 > 高中数学 > 题目详情
6.设向量前$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),则|$\overrightarrow{BC}$|等于(  )
A.2$\sqrt{6}$B.5C.$\sqrt{26}$D.6

分析 利用平面向量坐标运算法则求出$\overrightarrow{BC}$,由此能求出|$\overrightarrow{BC}$|.

解答 解:∵向量$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),
∴$\overrightarrow{BC}$=$\overrightarrow{BA}+\overrightarrow{AC}$=(3,4),
∴|$\overrightarrow{BC}$|=$\sqrt{{3}^{2}+{4}^{2}}$=5.
故选:B.

点评 本题考查向量的模的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.随着移动互联网的快速发展,基于互联网的共享单车应用而生,某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系,求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
 报废年限
车型
 1年 2年 3年 4年 总计
 A 20 35 35 10 100
 B 10 30 40 20 100
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinα+cosα=$\frac{2}{3}$,则cos2α=±$\frac{2\sqrt{14}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P(A)=$\frac{2}{5}$,P(AB)=$\frac{1}{3}$,则P(B|A)=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若三棱锥S-ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=$\frac{π}{3}$,则球O的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等腰△ABC中,AB=AC=1,D是线段AC的中点,设BD=x,△ABC的面积S=f(x),则函数f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.古希腊著名的毕达哥拉斯学派把1、3、6、10、15、…这样的数称为“三角形数”,而把1、4、9、16、25、…这样的数称为“正方形数”.从如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是(  )
A.16=3+13B.25=9+16C.36=10+26D.49=21+28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,22),从中随机取一件,其长度误差落在区间(2,4)内的概率为(  )(若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三条不重合的直线m,n,l和两个不重合的平面α,β,下列命题正确的是(  )
A.若m∥n,n?α,则m∥αB.若l∥n,m⊥n,则l∥m
C.若l⊥α,m⊥β,且l⊥m,则α⊥βD.若α⊥β,α∩β=m,且m⊥n,则n⊥α

查看答案和解析>>

同步练习册答案