精英家教网 > 高中数学 > 题目详情
16.随着移动互联网的快速发展,基于互联网的共享单车应用而生,某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系,求y关于x的线性回归方程,并预测M公司2017年4月份(即x=7时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
 报废年限
车型
 1年 2年 3年 4年 总计
 A 20 35 35 10 100
 B 10 30 40 20 100
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

分析 (Ⅰ)求出回归系数,可得回归方程,即可得出结论;
(Ⅱ)分别计算相应的数学期望,即可得出结论.

解答 解:(Ⅰ)由题意,$\overline{x}$=3.5,$\overline{y}$=16,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$=$\frac{35}{17.5}$=2,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=16-2×3.5=9,
∴$\stackrel{∧}{y}$=2x+9,
x=7时,$\stackrel{∧}{y}$=2×7+9=23,即预测M公司2017年4月份(即x=7时)的市场占有率为23%;
(Ⅱ)由频率估计概率,每辆A款车可使用1年,2年,3年、4年的概率分别为0.2,0.35,0.35,0.1,
∴每辆A款车的利润数学期望为(500-1000)×0.2+(1000-1000)×0.35+(1500-1000)×0.35+(2000-1000)×0.1=175元;
每辆B款车可使用1年,2年,3年、4年的概率分别为0.1,0.3,0.4,0.2,
∴每辆B款车的利润数学期望为(500-1200)×0.1+(1000-1200)×0.3+(1500-1200)×0.4+(2000-1200)×0.2=150元;
∵175>150,
∴应该采购A款车.

点评 本题考查数学知识在实际生活中的应用,考查学生的阅读能力,对数据的处理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若二项式(x-$\frac{1}{\sqrt{x}}$)n的展开式中只有第4项的二项式系数最大,则展开式中常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知各项均为整数的数列{an}中,a1=2,且对任意的n∈N*,满足an+1-an<2n+$\frac{1}{2},{a_{n+2}}-{a_n}>3×{2^n}$-1,则a2017=22017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于函数f(x)=xlnx有如下结论:
①该函数为偶函数;
②若f′(x0)=2,则x0=e;
③其单调递增区间是[$\frac{1}{e}$,+∞);
④值域是[$\frac{1}{e}$,+∞);
⑤该函数的图象与直线y=-$\frac{1}{e}$有且只有一个公共点.(本题中e是自然对数的底数)
其中正确的是②③⑤(请把正确结论的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2-x-$\frac{1}{a}$)eax(a>0).
(1)求函数y=f(x)的最小值;
(2)若存在唯一实数x0,使得f(x0)+$\frac{3}{a}$=0成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列关系式:
-1=-1.
-1+3=2,
-1+3-5=-3,
-1+3-5+7=4

则-1+3-5+7…+(-1)n(2n-1)=(-1)n•n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给定△ABC的三个条件:A=60°,b=4,a=2,则这样的三角形解的个数为(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-1≥1}\\{x-y≤0}\\{x+y-6≤0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.9B.4C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量前$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),则|$\overrightarrow{BC}$|等于(  )
A.2$\sqrt{6}$B.5C.$\sqrt{26}$D.6

查看答案和解析>>

同步练习册答案