精英家教网 > 高中数学 > 题目详情
14.已知P(A)=$\frac{2}{5}$,P(AB)=$\frac{1}{3}$,则P(B|A)=$\frac{5}{6}$.

分析 直接利用条件概率公式,即可得出结论.

解答 解:∵P(A)=$\frac{2}{5}$,P(AB)=$\frac{1}{3}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{1}{3}}{\frac{2}{5}}$=$\frac{5}{6}$,
故答案为$\frac{5}{6}$.

点评 本题考查条件概率,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.对于函数f(x)=xlnx有如下结论:
①该函数为偶函数;
②若f′(x0)=2,则x0=e;
③其单调递增区间是[$\frac{1}{e}$,+∞);
④值域是[$\frac{1}{e}$,+∞);
⑤该函数的图象与直线y=-$\frac{1}{e}$有且只有一个公共点.(本题中e是自然对数的底数)
其中正确的是②③⑤(请把正确结论的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-1≥1}\\{x-y≤0}\\{x+y-6≤0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.9B.4C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(Ⅰ)若3是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(Ⅱ)当0<a<1且t=1时,解不等式f(x)≤g(x);
(Ⅲ)若函数F(x)=af(x)+tx2-2t+1在区间(-1,3]上有零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体ABCD-A1B1C1D1的各顶点都在球O表面上,在球O内任取一点M,则点M在正方体ABCD-A1B1C1D1内的概率是(  )
A.$\frac{3\sqrt{2}}{4π}$B.$\frac{3\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{3π}$D.$\frac{2\sqrt{3}}{3π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{lnx+a}{(e+1)x}$在点(1,f(1))处的切线与直线y=3平行.
(Ⅰ)求函数的f(x)极值;
(Ⅱ)求证:当x>1时,f(x)(x+1)>$\frac{2{e}^{x-1}}{x{e}^{x}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量前$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),则|$\overrightarrow{BC}$|等于(  )
A.2$\sqrt{6}$B.5C.$\sqrt{26}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从焦点为F的抛物线y2=2px(p>0)上取一点A(x0,y0)(x0>$\frac{p}{2}$)作其准线的垂线,垂足为B,若|AF|=4,B到直线AF的距离为$\sqrt{7}$,则此抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数,0<α<π),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{6}$)=$\frac{1}{2}$.
(1)求曲线C1的极坐标方程;
(2)若直线OP:θ=θ1(0<θ1<$\frac{π}{2}$)交曲线C1于点P,交曲线C2于点Q,求|OP|+$\frac{1}{|OQ|}$的最大值.

查看答案和解析>>

同步练习册答案