精英家教网 > 高中数学 > 题目详情
9.已知正方体ABCD-A1B1C1D1的各顶点都在球O表面上,在球O内任取一点M,则点M在正方体ABCD-A1B1C1D1内的概率是(  )
A.$\frac{3\sqrt{2}}{4π}$B.$\frac{3\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{3π}$D.$\frac{2\sqrt{3}}{3π}$

分析 设正方体的棱长为a,则外接球的半径为$\frac{\sqrt{3}}{2}$a,以面积为测度,即可求出在球O内任取一点M,则点M在正方体ABCD-A1B1C1D1内的概率.

解答 解:设正方体的棱长为a,则外接球的半径为$\frac{\sqrt{3}}{2}$a,
∴在球O内任取一点M,则点M在正方体ABCD-A1B1C1D1内的概率是$\frac{{a}^{3}}{\frac{4}{3}π•(\frac{\sqrt{3}}{2}a)^{3}}$=$\frac{2\sqrt{3}}{3π}$,
故选:D.

点评 本题考查几何概型,考查学生的计算能力,正确求面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{2n+3}{n}$Sn(n∈N*).
(1)证明:数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列选项中说法错误的是(  )
A.27是3的倍数或27是9的倍数
B.平行四边形的对角线互相垂直且平分
C.平行四边形的对角线互相垂直或平分
D.1是方程x-1=0的根,且是方程x2-5x+4=0的根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinα+cosα=$\frac{2}{3}$,则cos2α=±$\frac{2\sqrt{14}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等差数列{an}满足sina4cosa7-cosa4sina7=1,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(  )
A.$(\frac{7π}{6},\frac{4π}{3})$B.$[{\frac{7π}{6},\frac{4π}{3}}]$C.$(\frac{4π}{3},\frac{3π}{2})$D.$[{\frac{4π}{3},\frac{3π}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P(A)=$\frac{2}{5}$,P(AB)=$\frac{1}{3}$,则P(B|A)=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若三棱锥S-ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=$\frac{π}{3}$,则球O的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.古希腊著名的毕达哥拉斯学派把1、3、6、10、15、…这样的数称为“三角形数”,而把1、4、9、16、25、…这样的数称为“正方形数”.从如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是(  )
A.16=3+13B.25=9+16C.36=10+26D.49=21+28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对[25,55]岁的人群随机抽取n人进行了生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.
组数分组低碳族的人数占本组的频率
第一组[25,30﹚1200.6
第二组[30,35﹚195p
第三组[35,40﹚1000.5
第四组[40,45﹚a0.4
第五组[45,50﹚300.3
第六组[50,55]150.3
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

查看答案和解析>>

同步练习册答案