精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{2x-{x}^{2},x>0}\\{0,x=0}\\{{x}^{2}+mx,x<0}\end{array}\right.$是奇函数,
(1)求实数m的值;
(2)画出函数y=f(x)的图象(不用列表),并根据图象写出该函数的单调区间;
(3)若函数y=f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

分析 (1)由已知中函数的解析式,先求出f(1),再由f(-1)=-f(1)得到f(-1)以及m的值;
(2)由已知中函数的解析式,结合二次函数的图象和性质,可得y=f(x)的图象,数形结合可写出单调区间;
(3)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知$\left\{\begin{array}{l}{a-2>-1}\\{a-2≤1}\end{array}\right.$,由此求得a的范围.

解答 解:(1)设x<0,则-x>0,
所以,f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,所以m=2,
(2)如图所示,由图可得:
f(x)的单调递增区间(-1,1),
f(x)的单调递减区间(-∞,-1),(1,+∞);
(3)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知$\left\{\begin{array}{l}{a-2>-1}\\{a-2≤1}\end{array}\right.$,
解得1<a≤3,故实数a的取值范围是(1,3].

点评 本题主要考查利用函数的奇偶性求函数的解析式,作函数的图象,函数的单调性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知α是第三象限角,化简:$\frac{{cos({\frac{π}{2}+α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cot({-α-π})sin({-π-α})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).
(1)求证:tan(α+β)=2tanα;
(2)求f(x)的解析式;
(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x+2-x.(x∈R)
(1)用单调函数定义证明f(x)在[0,+∞)单调递增;
(2)记f(x)在闭区间[t,t+1]上的最小值为g(t),求g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,既是奇函数又是增函数的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x3C.$y={({\frac{1}{2}})^x}$D.y=|x-1|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}(x<0)}\\{(3-a)x+\frac{1}{2}a(x≥0)}\end{array}\right.$是增函数,则a的取值范围是(  )
A.(1,2)B.(1,3)C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)${(2\frac{3}{5})^0}+{2^{-2}}•{(2\frac{1}{4})^{-\frac{1}{2}}}+{(\frac{25}{36})^{0.5}}+\sqrt{{{(-2)}^2}}$
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x<2},则(  )
A.∅∈AB.$\sqrt{3}∉A$C.$\sqrt{3}∈A$D.$\sqrt{3}$$\underset{?}{≠}$A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数y=aex+3x在R上有小于零的极值点,则实数a的取值范围是(  )
A.(-3,+∞)B.(-∞,-3)C.(-$\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

同步练习册答案