精英家教网 > 高中数学 > 题目详情
14.f(x)=[ax2+(a-1)2x-a2+3a-1]ex(a∈R).若f(x)在(2,3)上单调递增,求实数a取值范围.

分析 先求f′(x)=[ax2+(a2+1)x+a]ex,所以若f(x)在(2,3)上单调递增,则f′(x)≥0在(2,3)上恒成立,所以可设g(x)=ax2+(a2+1)x+a,则g(x)≥0在(2,3)上恒成立,所以讨论a的取值,结合二次函数的图象即可求出每种情况下的a的取值,然后求并集即可.

解答 解:f′(x)=[ax2+(a2+1)x+a]ex
∵f(x)在(2,3)上单调递增,ex>0;
∴ax2+(a2+1)x+a≥0在(2,3)上恒成立;
(1)若a=0,x≥0在(2,3)上恒成立;
(2)若a≠0,设g(x)=ax2+(a2+1)x+a,该函数为二次函数,则:△=(a2-1)2
∴①a=1时,△=0,满足g(x)≥0恒成立;
②a=-1时,△=0,不满足g(x)≥0在(2,3)上恒成立,即a≠-1;
③a>1时,△>0,要使g(x)≥0在(2,3)上恒成立,则:
$\left\{\begin{array}{l}{-\frac{{a}^{2}+1}{2a}<2}\\{g(2)=2{a}^{2}+5a+2≥0}\end{array}\right.$;
而上面不等式组a>1时恒成立;
④a<-1时,△>0,要使g(x)≥0在(2,3)上恒成立,则:
$\left\{\begin{array}{l}{g(2)=2{a}^{2}+5a+2≥0}\\{g(3)=3{a}^{2}+10a+3≥0}\end{array}\right.$;
解得a≤-3;
∴此时a≤-3.
∴综上得实数a的取值范围为{a|a≥1,或a≤-3,或a=0}.

点评 考查函数单调性和函数导数符号的关系,以及二次函数f(x)≥0时需满足的条件,并且对二次函数图象要熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线C;y2=2px(p>0)的焦点为F,准线为l,抛物线上的点M(3,y)(y>0)到焦点的距离|MF|=4
(1)求p和点M的坐标;
(2)过点M作准线的垂线MN,垂足为N,设直线m为线段FN的垂直平分线,证明直线m与抛物线有且只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在抛物线y2=2x中,焦点到准线的距离为a,若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥o}\\{x+y≥0}\\{x≤a}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-1B.$\frac{1}{2}$C.5D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点F的距离为3,椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>2)的左顶点为A,若MA⊥MF,那么a=(  )
A.49B.16C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.二项展开式(-$\frac{1}{x}$+2x25中,含x4项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.把下列程序用程序框图表示出来.
A=20
B=15
A=A+B
B=A-B
A=A•B
PRINT   A+B
END.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC外接球表面积为(  )
A.B.12πC.32πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知0°<α<45°,且lg(tanα)-lg(sinα)=lg(cosα)-lg($\frac{1}{tanα}$)+2lg3-$\frac{3}{2}$lg2,则cos3α-sin3α=$\frac{16\sqrt{2}-1}{27}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,曲线C:$\left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.$(t为参数)与y轴交于点A,在以原点为极点,x轴的正半轴为极轴且单位长度相同的极坐标系中曲线E的方程为ρ-2sinθ=0,则A与曲线E上的点的距离的最小值为3.

查看答案和解析>>

同步练习册答案