精英家教网 > 高中数学 > 题目详情
9.二项展开式(-$\frac{1}{x}$+2x25中,含x4项的系数为80.

分析 先求出二项式(-$\frac{1}{x}$+2x25的展开式中通项公式,令x的系数等于4,求出r的值,即可求得展开式中含x4的项的系数.

解答 解:二项式(-$\frac{1}{x}$+2x25的展开式中通项公式为Tr+1=${C}_{5}^{r}$(-1)5-r×2r×x3r-5
令3r-5=4,可得r=3,
∴展开式中含x4的项的系数是${C}_{5}^{3}$(-1)5-r×2r=80,
故答案为:80.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若sin2t=-${∫}_{0}^{t}$cosxdx,其中t∈(0,π),则t=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,过抛物线C:y2=2px(p>0)焦点F的直线与C交于 M,N两点,直线x=4交抛物线C于 A,B两点,点 M,N在直线x=4的同侧.已知|AF|=5,四边形AMNB的面积为$\frac{133}{8}$.
(Ⅰ)求p的值;
(Ⅱ)求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛物线y2=12x被直线x-y-3=0截得弦长为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点M(2,2)在抛物线C:y2=2px(p>0)上,则点M到其准线的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=[ax2+(a-1)2x-a2+3a-1]ex(a∈R).若f(x)在(2,3)上单调递增,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,集合A={x|x2-3x<0},B={x|x>1},则A∩B={x|1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的奇函数f(x)满足f(4-x)=f(x),当x∈[0,2]时,f(x)=$\sqrt{\frac{x}{2}}$,又g(x)=cos$\frac{πx}{4}$,则方程f(x)=g(x)在区间[-4,4]上的所有解的和为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的奇函数和偶数项分别为公差3d和d(d≠0)的等数数列,已知a1=1,a2=2,且存在不相等的正整数m、n使得am=an,则当d最大时,数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n为奇数}\\{\frac{n}{2}+1,n为偶数}\end{array}\right.$.

查看答案和解析>>

同步练习册答案