精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的奇函数和偶数项分别为公差3d和d(d≠0)的等数数列,已知a1=1,a2=2,且存在不相等的正整数m、n使得am=an,则当d最大时,数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n为奇数}\\{\frac{n}{2}+1,n为偶数}\end{array}\right.$.

分析 若d1=3d2(d1≠0),且存在正整数m、n(m≠n),使得am=an,在m,n中必然一个是奇数,一个是偶数.不妨设m为奇数,n为偶数,利用am=an,d=$\frac{6}{3m-n-1}$,从而可求当d最大时,数列{an}的通项公式.

解答 解:若存在正整数m、n(m≠n),使得am=an,在m,n中必然一个是奇数,一个是偶数
不妨设m为奇数,n为偶数
∵am=an,∴1+$\frac{m-1}{2}×3d$=2+($\frac{n}{2}$-1)d,
∴d=$\frac{6}{3m-n-1}$
∵m为奇数,n为偶数,∴3m-n-1的最小正值为2,此时d=3,
∴数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n为奇数}\\{\frac{n}{2}+1,n为偶数}\end{array}\right.$.
故答案为:an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n为奇数}\\{\frac{n}{2}+1,n为偶数}\end{array}\right.$.

点评 本题考查数列的通项,考查学生分析解决问题的能力,确定数列的公差是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.二项展开式(-$\frac{1}{x}$+2x25中,含x4项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设向量$\overrightarrow{a}$=(sinx,cos2x),$\overrightarrow{b}$=(sin2x,cosx).
(1)设$f(x)=\overrightarrow a•\overrightarrow b+sinx$,当$x∈(0,\frac{π}{2})$时,求f(x)的取值范围;
(2)构建两个集合A={sinx,cos2x},B={sin2x,cosx},若集合A=B,求满足条件的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x-3|+|x-a|.
(Ⅰ)当a=1时,求不等式f(x)<4的解集;
(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.记x2-x1为区间[x1,x2]的长度.已知函数y=2|x|,x∈[-2,a](a≥0),其值域为[m,n],则区间[m,n]的长度的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,曲线C:$\left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.$(t为参数)与y轴交于点A,在以原点为极点,x轴的正半轴为极轴且单位长度相同的极坐标系中曲线E的方程为ρ-2sinθ=0,则A与曲线E上的点的距离的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax+ln(x-1),其中a为常数.
(Ⅰ)试讨论f(x)的单调区间;
(Ⅱ)若a=$\frac{1}{1-e}$时,存在x使得不等式|f(x)|-$\frac{e}{e-1}$≤$\frac{2lnx+bx}{2x}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知梯形ABCD中,BC∥AD,AB=BC=$\frac{1}{2}$AD=1,且∠ABC=90°,以AC为折痕使得折叠后的图形中平面DAC⊥ABC.
(1)求证:DC⊥平面ABC;
(2)求四面体ABCD的外接球的体积;
(3)在棱AD上是否存在点P,使得AD⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z≠-1,则“|z|=1”是“$\frac{z-1}{z+1}$是纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案