精英家教网 > 高中数学 > 题目详情
14.记x2-x1为区间[x1,x2]的长度.已知函数y=2|x|,x∈[-2,a](a≥0),其值域为[m,n],则区间[m,n]的长度的最小值是3.

分析 先去绝对值原函数变成y=$\left\{\begin{array}{l}{{2}^{x}}&{x≥0}\\{(\frac{1}{2})^{x}}&{x<0}\end{array}\right.$,所以可将区间[-2,a]分成[-2,0),和[0,a],所以求出每种情况的y的取值范围:x∈[-2,0)时,1<y≤4;而x∈[0,a]时,1≤y≤2a,所以讨论0≤a≤2,和a>2两种情况,并求出每种情况下函数的值域,从而求出区间[m,n]的长度的最小值.

解答 解:$y={2}^{|x|}=\left\{\begin{array}{l}{{2}^{x}}&{x≥0}\\{(\frac{1}{2})^{x}}&{x<0}\end{array}\right.$;
∴①x∈[-2,0)时,$(\frac{1}{2})^{0}<(\frac{1}{2})^{x}≤(\frac{1}{2})^{-2}$;
∴此时1<y≤4;
②x∈[0,a]时,20≤2x≤2a
∴此时1≤y≤2a,则:
0≤a≤2时,该函数的值域为[1,4],区间长度为3;
a>2时,区间长度为2a-1>3;
∴综上得,区间[m,n]长度的最小值为3.
故答案为:3.

点评 考查含绝对值函数的处理方法:去绝对值,指数函数的单调性,根据函数的单调性求函数的取值范围,区间长度的概念,以及分段函数值域的求法,注意对a的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知点M(2,2)在抛物线C:y2=2px(p>0)上,则点M到其准线的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(1,$\sqrt{2}$)是角α终边上一点,则cos(30°-α)=$\frac{1}{2}$+$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有5名优秀毕业生到母校的3个班去作学习经验交流,则每个班至少去一名的不同分派方法种数为(  )
A.150B.180C.200D.280

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为$\frac{19}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的奇函数和偶数项分别为公差3d和d(d≠0)的等数数列,已知a1=1,a2=2,且存在不相等的正整数m、n使得am=an,则当d最大时,数列{an}的通项公式为an=$\left\{\begin{array}{l}{\frac{3}{2}n-\frac{1}{2}.n为奇数}\\{\frac{n}{2}+1,n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用2、3、4、5、6这5个数作为基本元素,构造以下两类基本问题:
(1)从上面两个数中,每次取出2个不同数字的组合问题;
(2)从上面两个数中,每次取出2个不同数字的排列问题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.z=1+i,$\overline{z}$为复数z的共轭复数,则z+$\overrightarrow{z}+|\overrightarrow{z}|-1$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知O是△ABC的外接圆圆心,$|\overrightarrow{AB}|=4$,D是BC中点,若$\overrightarrow{AO}•\overrightarrow{AD}=5$,则$|\overrightarrow{AC}|$=2.

查看答案和解析>>

同步练习册答案