精英家教网 > 高中数学 > 题目详情

【题目】由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了两个地区的名观众,得到如下的列联表:

已知在被调查的名观众中随机抽取名,该观众是地区当中非常满意的观众的概率为,且.

(1)现从名观众中用分层抽样的方法抽取名进行问卷调查,则应抽取满意地区的人数各是多少.

(2)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系.

(3)若以抽样调查的频率为概率,从地区随机抽取人,设抽到的观众“非常满意”的人数为,求的分布列和期望.

附:参考公式:

【答案】(1)3,4(2) 没有的把握认为观众的满意程度与所在地区有关系(3)见解析

【解析】试题分析:(1)利用 观众是地区当中非常满意的观众的概率为 ,计算得的值,再利用总数和求得的值.由此求得各区抽取人数(2)利用已知填写好表格,并计算得,所以没有的把握认为观众的满意程度与所在地区有关系.(3)利用二项分布概率计算公式计算得分布列并求得期望.

试题解析:

(1)由题意,得,所以,所以,因为,所以

A地抽取,B地抽取

(2)

所以没有的把握认为观众的满意程度与所在地区有关系.

(3) 地区随机抽取人,抽到的观众“非常满意”的概率为

随机抽取人, 的可能取值为

,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线和圆是直线上一点,过点作圆的两条切线,切点分别为.

1)若,求点坐标;

2)若圆上存在点,使得,求点的横坐标的取值范围;

3)设线段的中点为轴的交点为,求线段长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有______.

①空间中三条直线交于一点,则这三条直线共面;

②一个平行四边形确定一个平面;

③若一个角的两边分别平行于另一个角的两边,则这两个角相等;

④已知两个不同的平面,若,且,则点在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线.

1)求圆面积的最小值;

2)设直线与圆交于不同的两点,且,求圆的方程;

3)设直线与(2)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程有两个不等的负根;关于的方程无实根,若为真,为假,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是以为公差的等差数列,数列的前项和为,满足 ,则不可能是(  )

A. -1 B. 0

C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的单调区间.

)若对任意 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数),上的动点,且满足为坐标原点),以原点为极点,以轴的正半轴为极轴建立极坐标系,点的极坐标为

(1)求线段的中点的轨迹的普通方程;

(2)证明:为定值,并求面积的最大值。

查看答案和解析>>

同步练习册答案