设数列{an},{bn}满足a1=b1,且对任意正整数n,{an}中小于等于n的项数恰为bn;{bn}中小于等于n的项数恰为an.
(1)求a1;
(2)求数列{an}的通项公式.
(1)首先,容易得到一个简单事实:{an}与{bn}均为不减数列且an∈N,bn∈N.
若a1=b1=0,故{an}中小于等于1的项至少有一项,从而b1≥1,这与b1=0矛盾.
若a1=b1≥2,则{an}中没有小于或等于1的项,从而b1=0,这与b1≥2矛盾.
所以,a1=1.
(2)假设当n=k时,ak=bk=k,k∈N*.
若ak+1≥k+2,因{an}为不减数列,故{an}中小于等于k+1的项只有k项,
于是bk+1=k,此时{bn}中小于等于k的项至少有k+1项(b1,b2,…,bk,bk+1),
从而ak≥k+1,这与假设ak=k矛盾.
若ak+1=k,则{an}中小于等于k的项至少有k+1项(a1,a2,…,ak,ak+1),
于是bk≥k+1,这与假设bk=k矛盾.
所以,ak+1=k+1.
所以,当n=k+1时,猜想也成立.
综上,由(1),(2)可知,an=bn=n对一切正整数n恒成立.
所以,an=n,即为所求的通项公式.
科目:高中数学 来源: 题型:
在极坐标系中,圆C的圆心坐标为
,半径为2. 以极点为原点,极轴为
的正半轴,取相同的长度单位建立平面直角坐标系,直线
的参数方程为
(
为参数)
(1)求圆C的极坐标方程;
(2)设
与圆C的交点为
,
与
轴的交点为
,求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x-2)2+y2=1的两条切线,切点为M,N,|MN|=
.
(1)求抛物线E的方程;
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且
(其中 O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com