已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A、B两点,且
=3,则C的方程为( )
(A)
+y2=1 (B)
+
=1
(C)
+
=1 (D)
+
=1
科目:高中数学 来源: 题型:
设双曲线
-
=1(a>0,b>0)的虚轴长为2,焦距为2
,则双曲线的渐近线方程为( )
(A)y=±
x (B)y=±2x (C)y=±
x (D)y=±
x
查看答案和解析>>
科目:高中数学 来源: 题型:
双曲线的中心在坐标原点O,A、C分别是双曲线虚轴的上、下顶点,B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于点D,若双曲线的离心率为2,则∠BDF的余弦值是( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知△ABC外接圆半径R=
,且∠ABC=120°,BC=10,边BC在x轴上且y轴垂直平分BC边,则过点A且以B,C为焦点的双曲线方程为( )
(A)
-
=1 (B)
-
=1
(C)
-
=1 (D)
-
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
设F1,F2是椭圆E:
+
=1(a>b>0)的左、右焦点,P为直线x=
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )
(A)
(B)
(C)
(D) ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的焦距为4,且过点P(
,
).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2
),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,已知A,B分别为椭圆
+
=1(a>b>0)的右顶点和上顶点,直线l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE·kDF等于( )
![]()
(A)±
(B)±![]()
(C)±
(D)±![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com