精英家教网 > 高中数学 > 题目详情
13.全称命题 p:“x∈N,x>0”的否定 p 为存在x∈N,x≤0.

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以全称命题 p:“x∈N,x>0”的否定 p 为:存在x∈N,x≤0.
故答案为:存在x∈N,x≤0.

点评 本题考查全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知点P(2,1).
(1)求过P点与原点距离为2的直线l的方程;
(2)求过P点与原点距离最大的直线l的方程,最大距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\overrightarrow a=({1,3}),\overrightarrow b=({x,6})$,且$\overrightarrow a∥\overrightarrow b$,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我校某高一学生为了获得华师一附中荣誉毕业证书,在“体音美2+1+1项目”中学习游泳.他每次游泳测试达标的概率都为60%,现采用随机模拟的方法估计该同学三次测试恰有两次达标的概率:先由计算器产生0到9之间的整数随机数,指定1,2,3,4表示未达标,5,6,7,8,9,0表示达标;再以每三个随机数为一组,代表三次测试的结果,经随机模拟产生了如下20组随机数:
917   966   891   925   271   932   872   458   569   683
431   257   393   027   556   488   730   113   507   989
据此估计,该同学三次测试恰有两次达标的概率为(  )
A.0.50B.0.40C.0.43D.0.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中是假命题的是(  )
A.存在α,β∈R,使tan(α+β)=tan α+tan β
B.对任意x>0,有lg2x+lg x+1>0
C.△ABC中,A>B的充要条件是sin A>sin B
D.对任意φ∈R,函数y=sin(2x+φ)都不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=2sin({ωx+φ})({ω>0,|φ|≤\frac{π}{2}})$,其图象与直线y=-2相邻两个交点的距离为π.若f(x)>1对于任意的$x∈({-\frac{π}{12},\frac{π}{6}})$恒成立,则φ的取值范围是(  )
A.$[{\frac{π}{6},\frac{π}{3}}]$B.$[{\frac{π}{3},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n(n∈N+)项和${S_n}={n^2}+2n$.
(1)求an
(2)设${b_n}=\frac{1}{S_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|m≤x≤m+4,m∈R},B={x|x<-5或x>3}
(1)若m=1,求A∩B,A∪B;
(2)若A⊆B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求不等式(2x-1)(x+2)≥3x-1的解集.

查看答案和解析>>

同步练习册答案