精英家教网 > 高中数学 > 题目详情
19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右顶点分别为A1,A2,点M为椭圆上不同于A1,A2的一点,若直线MA1,MA2与直线的斜率之积为$-\frac{1}{2}$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

分析 设出M坐标,由直线AM,BM的斜率之积为-$\frac{1}{2}$得一关系式,再由点M在椭圆上变形可得另一关系式,联立后结合隐含条件求得椭圆的离心率.

解答 解:由椭圆方程可知,A(-a,0),B(a,0),
设M(x0,y0),∴${k}_{AM}=\frac{{y}_{0}}{{x}_{0}+a}$,${k}_{BM}=\frac{{y}_{0}}{{x}_{0}-a}$,
则$\frac{{y}_{0}}{{x}_{0}+a}•\frac{{y}_{0}}{{x}_{0}-a}=-\frac{1}{2}$,整理得:$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{1}{2}$,①
又$\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$,得${{y}_{0}}^{2}=\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{{x}_{0}}^{2})$,
即$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$,②
联立①②,得-$\frac{{b}^{2}}{{a}^{2}}=-\frac{1}{2}$,即$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{1}{2}$,解得e=$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查椭圆的简单性质,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是(  )
A.[0,+∞)B.[1,3]C.(-1,-$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某一空间几何体的三视图如图所示,则该几何体的最长棱长为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c为正数,且a+b+c=3,求$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\frac{\sqrt{5}}{2}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{2\sqrt{5}}{5}$,点O位坐标原点.
(1)求椭圆E的标准方程;
(2)过椭圆E的左焦点F作任一条不垂直于坐标轴的直线l,交椭圆E于P,Q两点,记弦PQ的中点为M,过F作PQ的中点为M,过F做PQ的垂线FN交直线OM于点N,证明,点N在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a>0,b>0,若$\sqrt{2}$是4a和2b的等比中项,则$\frac{2}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z满足(1+i)z=1+3i(i是虚数单位),则z的共轭复数为(  )
A.1-iB.1+iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y2=4x的焦点为F,点A(3,2),P为抛物线上一点,且P不在直线AF上,则△PAF周长的最小值为(  )
A.4B.5C.$4+2\sqrt{2}$D.$5+\sqrt{5}$

查看答案和解析>>

同步练习册答案