14£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{2\sqrt{5}}{5}$£¬µãOÎ»×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²EµÄ×ó½¹µãF×÷ÈÎÒ»Ìõ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±Ïßl£¬½»ÍÖÔ²EÓÚP£¬QÁ½µã£¬¼ÇÏÒPQµÄÖеãΪM£¬¹ýF×÷PQµÄÖеãΪM£¬¹ýF×öPQµÄ´¹ÏßFN½»Ö±ÏßOMÓÚµãN£¬Ö¤Ã÷£¬µãNÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊÇóµÃa2=5b2£¬½«µã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ìl£¬ÔòÖ±ÏßFN£ºy=-$\frac{1}{k}$£¨x+2£©£¬½«Ö±Ïßl´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬¸ù¾ÝÖ±ÏßOM·½³Ì£¬ÇóµÃÖ±ÏßFNºÍOMµÄ½»µãN£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{2\sqrt{5}}{5}$£¬
Ôòa2=5b2£¬
½«µã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²$\frac{{x}^{2}}{5{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬½âµÃ£ºb2=1£¬a2=5£¬
¡àÍÖÔ²EµÄ±ê×¼·½³Ì$\frac{{x}^{2}}{5}+{y}^{2}=1$£»
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£ºÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÇÒ²»Îª0£¬y=k£¨x+2£©£¬Ö±ÏßFN£ºy=-$\frac{1}{k}$£¨x+2£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬
Ôò$\left\{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{{x}^{2}}{5}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+5k2£©x2+20k2x+20k2-5=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{20{k}^{2}}{1+5{k}^{2}}$£¬x1+x2=$\frac{20{k}^{2}-5}{1+5{k}^{2}}$£¬
Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{10{k}^{2}}{1+5{k}^{2}}$£¬y0=k£¨x0+2£©=$\frac{2k}{1+5{k}^{2}}$£¬
ÔòÖ±ÏßOMµÄбÂÊΪkOM=$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{5k}$£¬
Ö±ÏßOM£ºy=-$\frac{1}{5k}$x£¬
$\left\{\begin{array}{l}{y=-\frac{1}{5k}x}\\{y=-\frac{1}{k}£¨x+2£©}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=\frac{1}{2k}}\end{array}\right.$£¬
¼´ÓÐkÈ¡ºÎÖµ£¬NµÄºá×ø±ê¾ùΪ-$\frac{5}{2}$£¬ÔòµãNÔÚÒ»Ìõ¶¨Ö±Ïßx=-$\frac{5}{2}$ÉÏ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éµãÔÚ¶¨Ö±ÏßÉϵÄÇ󷨣¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌÇ󽻵㣬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªai£¾0£¨i=1£¬2£¬3£¬¡­£¬n£©£¬¹Û²ìÏÂÁв»µÈʽ£º$\frac{{{a_1}+{a_2}}}{2}¡Ý\sqrt{{a_1}{a_2}}$£»$\frac{{{a_1}+{a_2}+{a_3}}}{3}¡Ý\root{3}{{{a_1}{a_2}{a_3}}}$£»$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}¡Ý\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$£»
¡­
Õմ˹æÂÉ£¬µ±n¡ÊN*£¨n¡Ý2£©Ê±£¬$\frac{{{a_1}+{a_2}+¡­+{a_n}}}{n}¡Ý$$\root{n}{{{a_1}{a_2}¡­{a_n}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®2017Äê1ÔÂ1ÈÕ£¬×÷Ϊ¹óÑôÊдòÔ조ǧ԰֮³Ç¡±27¸öʾ·¶ÐÔ¹«ÔªÖ®Ò»µÄȪºþ¹«Ô°Õýʽ¿ªÔ°£¬Ôªµ©ÆÚ¼ä£¬ÎªÁË»îÔ¾Æø·Õ£¬Ö÷°ì·½ÉèÖÃÁËË®ÉÏÌôÕ½ÏîÄ¿ÏòÈ«ÌåÊÐÃñ¿ª·Å£¬ÏÖ´Óµ½¹«Ô°ÓÎÀÀµÄÊÐÃñÖÐËæ»ú³éÈ¡ÁË60ÃûÄÐÉúºÍ40ÃûÅ®Éú¹²100È˽øÐе÷²é£¬Í³¼Æ³ö100ÃûÊÐÃñÖÐÔ¸Òâ½ÓÊÜÌôÕ½ºÍ²»Ô¸Òâ½ÓÊÜÌôÕ½µÄÄÐÅ®Éú±ÈÀýÇé¿ö£¬¾ßÌåÊý¾ÝÈçͼ±í£º
£¨1£©¸ù¾ÝÌõ¼þÍê³ÉÏÂÁÐ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý1%µÄÇé¿öÏÂÔ¸Òâ½ÓÊÜÌôÕ½ÓëÐÔ±ðÓйأ¿
  Ô¸Òâ ²»Ô¸Òâ ×ܼÆ
 ÄÐÉú   
 Å®Éú   
 ×ܼƠ  
£¨2£©Ë®ÉÏÌôÕ½ÏîÄ¿¹²ÓÐÁ½¹Ø£¬Ö÷°ì·½¹æ¶¨£ºÌôÕ½¹ý³ÌÒÀ´Î½øÐУ¬Ã¿Ò»¹Ø¶¼ÓÐÁ½´Î»ú»áÌôÕ½£¬Í¨¹ýµÚÒ»¹Øºó²ÅÓÐ×ʸñ²ÎÓëµÚ¶þ¹ØµÄÌôÕ½£¬Èô¼×²Î¼Óÿһ¹ØµÄÿһ´ÎÌôսͨ¹ýµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬¼Ç¼×ͨ¹ýµÄ¹ØÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
²Î¿¼¹«Ê½ÓëÊý¾Ý£º
 P£¨K2¡Ýk0£© 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬f¡ä£¨x£©ÊÇÆäµ¼º¯Êý£¬ÇÒÂú×ãf£¨x£©+f¡ä£¨x£©£¾2£¬f£¨1£©=2+$\frac{4}{e}$£¬Ôò²»µÈʽexf£¨x£©£¾4+2exµÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬+¡Þ£©C£®£¨-¡Þ£¬2£©D£®£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=exlnx-1£¬g£¨x£©=$\frac{x}{{e}^{x}}$£®
£¨¢ñ£©Èôg£¨x£©=aÔÚ£¨0£¬2£©ÉÏÓÐÁ½¸ö²»µÈʵ¸ù£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©Ö¤Ã÷£ºf£¨x£©+$\frac{2}{eg£¨x£©}$£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×óÓÒ¶¥µã·Ö±ðΪA1£¬A2£¬µãMΪÍÖÔ²Éϲ»Í¬ÓÚA1£¬A2µÄÒ»µã£¬ÈôÖ±ÏßMA1£¬MA2ÓëÖ±ÏßµÄбÂÊÖ®»ýΪ$-\frac{1}{2}$£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=kx£¬g£¨x£©=2lnx+2e£¨$\frac{1}{e}$¡Üx¡Üe2£©£¬Èôf£¨x£©Óëg£¨x£©µÄͼÏóÉÏ·Ö±ð´æÔÚµãM£¬N£¬Ê¹µÃMN¹ØÓÚÖ±Ïßy=e¶Ô³Æ£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ[-$\frac{2}{e}$£¬2e]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÈôÕâ¸ö¼¸ºÎÌåµÄ¶¥µã¶¼ÔÚÇòOµÄ±íÃæÉÏ£¬ÔòÇòOµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®2¦ÐB£®4¦ÐC£®5¦ÐD£®20¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¼¯ºÏA={x|x2-5x-6¡Ü0}£¬$B=\left\{{\left.x\right|\frac{1}{x-1}£¾0}\right\}$£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®[-1£¬6]B£®£¨1£¬6]C£®[-1£¬+¡Þ£©D£®[2£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸