4£®ÒÑÖªai£¾0£¨i=1£¬2£¬3£¬¡­£¬n£©£¬¹Û²ìÏÂÁв»µÈʽ£º$\frac{{{a_1}+{a_2}}}{2}¡Ý\sqrt{{a_1}{a_2}}$£»$\frac{{{a_1}+{a_2}+{a_3}}}{3}¡Ý\root{3}{{{a_1}{a_2}{a_3}}}$£»$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}¡Ý\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$£»
¡­
Õմ˹æÂÉ£¬µ±n¡ÊN*£¨n¡Ý2£©Ê±£¬$\frac{{{a_1}+{a_2}+¡­+{a_n}}}{n}¡Ý$$\root{n}{{{a_1}{a_2}¡­{a_n}}}$£®

·ÖÎö ÓÉÌâÒ⣬֪×ó±ßÿһ¸öʽ×ÓÊÇËãÊõƽ¾ùÊý£¬ÓұߵÄʽ×ÓÊǼ¸ºÎƽ¾ùÊý£¬¼´¼¸¸öÊýËãÊõƽ¾ùÊý²»Ð¡ÓÚËüÃǵļ¸ºÎƽ¾ùÊý£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºÓÉÌâÒ⣬֪×ó±ßÿһ¸öʽ×ÓÊÇËãÊõƽ¾ùÊý£¬ÓұߵÄʽ×ÓÊǼ¸ºÎƽ¾ùÊý£¬¼´¼¸¸öÊýËãÊõƽ¾ùÊý²»Ð¡ÓÚËüÃǵļ¸ºÎƽ¾ùÊý£®
¹éÄÉÍÆ²âµ±n¡ÊN*£¨n¡Ý2£©Ê±£¬$\frac{{{a_1}+{a_2}+¡­+{a_n}}}{n}¡Ý$$\root{n}{{{a_1}{a_2}¡­{a_n}}}$£®
¹Ê´ð°¸Îª£º$\root{n}{{{a_1}{a_2}¡­{a_n}}}$£®

µãÆÀ ±¾Ì⿼²é¹éÄÉÍÆÀí£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±È½Ï»ù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈçͼËùʾ£¬Ä³»õ³¡ÓÐÁ½¶Ñ¼¯×°Ï䣬һ¶Ñ2¸ö£¬Ò»¶Ñ3¸ö£¬ÏÖÐèҪȫ²¿×°ÔË£¬Ã¿´ÎÖ»ÄÜ´ÓÆäÖÐÒ»¶ÑÈ¡×îÉÏÃæµÄÒ»¸ö¼¯×°Ï䣬ÔòÔÚ×°Ô˵Ĺý³ÌÖв»Í¬È¡·¨µÄÖÖÊýÊÇ10£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²¦££º$\frac{x^2}{a^2}$+y2=1£¨a£¾1£©µÄ×ó½¹µãΪF1£¬ÓÒ¶¥µãΪA1£¬É϶¥µãΪB1£¬¹ýF1£¬A1£¬B1ÈýµãµÄÔ²PµÄÔ²ÐÄ×ø±êΪ£¨$\frac{{\sqrt{3}-\sqrt{2}}}{2}$£¬$\frac{{1-\sqrt{6}}}{2}$£©£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+m£¨k£¬mΪ³£Êý£¬k¡Ù0£©ÓëÍÖÔ²¦£½»ÓÚ²»Í¬µÄÁ½µãMºÍN£®
£¨i£©µ±Ö±Ïßl¹ýE£¨1£¬0£©£¬ÇÒ$\overrightarrow{EM}$+2$\overrightarrow{EN}$=$\overrightarrow 0$ʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨ii£©µ±×ø±êÔ­µãOµ½Ö±ÏßlµÄ¾àÀëΪ$\frac{{\sqrt{3}}}{2}$ʱ£¬ÇÒ¡÷MONÃæ»ýΪ$\frac{{\sqrt{3}}}{2}$ʱ£¬ÇóÖ±ÏßlµÄÇãб½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈçͼËùʾ£¬Ãæ»ýΪSµÄÆ½ÃæÍ¹ËıßÐεĵÚiÌõ±ßµÄ±ß³¤Îªai£¨i=1£¬2£¬3£¬4£©£¬´ËËıßÐÎÄÚÔÚÒ»µãPµ½µÚiÌõ±ßµÄ¾àÀë¼ÇΪhi£¨i=1£¬2£¬3£¬4£©£¬Èô$\frac{a_1}{1}=\frac{a_2}{3}=\frac{a_3}{5}=\frac{a_4}{7}$=k£¬Ôòh1+3h2+5h3+7h4=$\frac{2S}{k}$£®Àà±ÈÒÔÉÏÐÔÖÊ£¬Ìå»ýΪVµÄÈýÀâ×¶µÄµÚi¸öÃæµÄÃæ»ý¼ÇΪSi£¨i=1£¬2£¬3£¬4£©£¬´ËÈýÀâ×¶ÄÚÈÎÒ»µãQµ½µÚi¸öÃæµÄ¾àÀë¼ÇΪHi£¨i=1£¬2£¬3£¬4£©£¬Èô$\frac{S_1}{1}=\frac{S_2}{3}=\frac{S_3}{5}=\frac{S_4}{7}$=K£¬H1+3H2+5H3+7H4=£¨¡¡¡¡£©
A£®$\frac{V}{2K}$B£®$\frac{2V}{K}$C£®$\frac{3V}{K}$D£®$\frac{V}{3K}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ·½³ÌΪx+y+3=0£¬ÒÔÖ±½Ç×ø±êϵÖÐxÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²MµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®
£¨¢ñ£©Ð´³öÔ²MµÄÖ±½Ç×ø±ê·½³Ì¼°¹ýµãP£¨2£¬0£©ÇÒÆ½ÐÐÓÚlµÄÖ±Ïßl1µÄ²ÎÊý·½³Ì£»
£¨¢ò£©Éèl1ÓëÔ²MµÄÁ½¸ö½»µãΪA£¬B£¬Çó$\frac{1}{PA}$+$\frac{1}{PB}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{kx+3£¬x¡Ý0}\\{£¨\frac{1}{2}£©^{x}£¬x£¼0}\end{array}\right.$£¬Èô·½³Ìf£¨f£¨x£©£©-2=0Ç¡ÓÐÈý¸öʵÊý¸ù£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬+¡Þ£©B£®[1£¬3]C£®£¨-1£¬-$\frac{1}{3}$]D£®[-1£¬-$\frac{1}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÔöº¯Êý£¬y=f£¨x£©µÄͼÏó¾­¹ýµãA£¨0£¬-1£©ºÍµãBʱ£¬ÄÜÈ·¶¨²»µÈʽ|f£¨x+1£©|£¼1µÄ½â¼¯Ç¡ºÃΪ{x|-1£¼x£¼2}£¬ÔòµãBµÄ×ø±êΪ£¨3£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÖйúµÄ¼ÆÁ¿µ¥Î»¿ÉÒÔ×·Ëݵ½4000¶àÄêǰµÄÊÏ×åÉç»áÄ©ÆÚ£¬¹«ÔªÇ°221Äê£¬ÇØÍõͳһÖйúºó£¬°ä²¼Í¬Ò»¶ÈÁ¿ºâµÄÚ¯Êé²¢ÖÆ·¢Á˳ÉÌ×µÄȨºâºÍÈÝÁ¿±ê×¼Æ÷£®ÏÂͼÊǹŴúµÄÒ»ÖÖ¶ÈÁ¿¹¤¾ß¡°¶·¡±£¨Î޸ǣ¬²»¼ÆÁ¿ºñ¶È£©µÄÈýÊÓͼ£¨ÆäÕýÊÓͼºÍ²àÊÓͼΪµÈÑüÌÝÐΣ©£¬Ôò´Ë¡°¶·¡±µÄÌå»ýΪ£¨µ¥Î»£ºÁ¢·½ÀåÃ×£©£¨¡¡¡¡£©
A£®2000B£®2800C£®3000D£®6000

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{2\sqrt{5}}{5}$£¬µãOÎ»×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²EµÄ×ó½¹µãF×÷ÈÎÒ»Ìõ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±Ïßl£¬½»ÍÖÔ²EÓÚP£¬QÁ½µã£¬¼ÇÏÒPQµÄÖеãΪM£¬¹ýF×÷PQµÄÖеãΪM£¬¹ýF×öPQµÄ´¹ÏßFN½»Ö±ÏßOMÓÚµãN£¬Ö¤Ã÷£¬µãNÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸