精英家教网 > 高中数学 > 题目详情
14.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是10(用数字作答).

分析 根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分析可得必须先取1或4,据此分2种情况讨论,分别列举2种情况下的取法数目,由分类计数原理计算可得答案.

解答 解:根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,
分2种情况讨论:
若先取1,有12345、12453、12435、14235、14253、14523,共6种取法;
若先取4,有45123、41523、41253、41235,共4种取法;
则一共有6+4=10中不同的取法;
故答案为:10.

点评 本题考查计数原理的应用,关键是依据题意,正确进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,1),则下列结论中正确的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|B.$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$C.$\overrightarrow{a}$⊥$\overrightarrow{b}$D.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对任意的正整数n,以及任意n个互不相同的正整数a1,a2,…,an,若不等式${({\frac{1}{a_1}})^λ}+{({\frac{1}{a_2}})^λ}+…+{({\frac{1}{a_n}})^λ}<2$恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱锥A1B1C1-ABC,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面A1BA所成的二面角(是指不超过90°的角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四边形ABCD和BCGE均为直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求证:AG∥平面BDE;
(2)求三棱锥G-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则$\frac{b+2}{a+2}$的取值范围是(  )
A.($\frac{2}{3}$,2)B.(-∞,$\frac{2}{3}$)∪(2,+∞)C.(2,+∞)D.(-∞,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x+1|.
(1)求不等式|2x+1|-f(x)<1的解集;
(2)若关于x的不等式f(x)≥|a-x|+2的解集为非空集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知ai>0(i=1,2,3,…,n),观察下列不等式:$\frac{{{a_1}+{a_2}}}{2}≥\sqrt{{a_1}{a_2}}$;$\frac{{{a_1}+{a_2}+{a_3}}}{3}≥\root{3}{{{a_1}{a_2}{a_3}}}$;$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}≥\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$;

照此规律,当n∈N*(n≥2)时,$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}≥$$\root{n}{{{a_1}{a_2}…{a_n}}}$.

查看答案和解析>>

同步练习册答案