分析 首先分析题目已知y=f(x)是定义在R上的增函数,且满足|f(x+1)|<1的解集为{x|-1<x<2}.求图象过的点.考虑|f(x+1)|<1,即为-1<f(x+1)<1,由区间值域和定义域,又根据函数的单调性可以直接判断出所过的端点处的值.即可得到答案.
解答 解:由题意不等式|f(x+1)|<1的解集为{x|-1<x<2}.
即-1<f(x+1)<1的解集为{x|-1<x<2}.
又已知函数y=f(x)是定义在R上的增函数.
故设t=x+1,根据单调性可以分析得到值域为(-1,1)所对应的定义域为(0,3)
故可以分析到y=f(x)的图象过点(0,-1)和点(3,1),
故B(3,1),
故答案为:(3,1).
点评 此题主要考查绝对值不等式的解法,其中涉及到函数单调性的问题,属于不等式和函数的简单综合问题,计算量小,属于基础题型.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2}{3}$,2) | B. | (-∞,$\frac{2}{3}$)∪(2,+∞) | C. | (2,+∞) | D. | (-∞,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 愿意 | 不愿意 | 总计 | |
| 男生 | |||
| 女生 | |||
| 总计 |
| P(K2≥k0) | 0.1 | 0.05 | 0.025 | 0.01 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com