精英家教网 > 高中数学 > 题目详情
1.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(Ⅰ)求证:AF∥平面BCE;
(II)求证:AC⊥平面BCE; 
(Ⅲ)求二面角F-BC-D平面角的余弦值.

分析 (I)由AF∥BE,BE?平面BCE,AF?平面BCE,得AF∥平面BCE.                                                                                                                
(II)过C作CM⊥AB,垂足为M,由AC2+BC2=AB2,得AC⊥BC;再证BE⊥AC,即可得到AC⊥平面BCE.
(III∠FCA为二面角F-BC-D平面角的平面角,在Rt△AFC中,求得二面角F-BC-D平面角的余弦值

解答 解:(I)因为四边形ABEF为矩形,所以AF∥BE,BE?平面BCE,AF?平面BCE,
    所以AF∥平面BCE.                                                                                                                
(II)过C作CM⊥AB,垂足为M,
因为AD⊥DC所以四边形ADCM为矩形.所以AM=MB=2,又因为AD=2,AB=4所以AC=2$\sqrt{2}$,CM=2,BC=2$\sqrt{2}$
所以AC2+BC2=AB2,所以AC⊥BC;
因为AF⊥平面ABCD,AF∥BE,所以BE⊥平面ABCD,所以BE⊥AC,
又因为BE?平面BCE,BC?平面BCE,BE∩BC=B所以AC⊥平面BCE.
(III)∵FA⊥面ABCD,AC⊥BC,∴∠FCA为二面角F-BC-D平面角的平面角,在Rt△AFC中,cos∠ACF=$\frac{AF}{FC}=\frac{2\sqrt{2}}{2\sqrt{3}}=\frac{\sqrt{6}}{3}$
二面角F-BC-D平面角的余弦值为$\frac{\sqrt{6}}{3}$

点评 本题考查了空间线面平行、线面垂直的判定,及几何法求二面角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是(  )
A.6B.5C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,面积为S的平面凸四边形的第i条边的边长为ai(i=1,2,3,4),此四边形内在一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{3}=\frac{a_3}{5}=\frac{a_4}{7}$=k,则h1+3h2+5h3+7h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{3}=\frac{S_3}{5}=\frac{S_4}{7}$=K,H1+3H2+5H3+7H4=(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{3V}{K}$D.$\frac{V}{3K}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是(  )
A.[0,+∞)B.[1,3]C.(-1,-$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=f(x)是定义在R上的增函数,y=f(x)的图象经过点A(0,-1)和点B时,能确定不等式|f(x+1)|<1的解集恰好为{x|-1<x<2},则点B的坐标为(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{bn},b2017=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.中国的计量单位可以追溯到4000多年前的氏族社会末期,公元前221年,秦王统一中国后,颁布同一度量衡的诏书并制发了成套的权衡和容量标准器.下图是古代的一种度量工具“斗”(无盖,不计量厚度)的三视图(其正视图和侧视图为等腰梯形),则此“斗”的体积为(单位:立方厘米)(  )
A.2000B.2800C.3000D.6000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某一空间几何体的三视图如图所示,则该几何体的最长棱长为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a>0,b>0,若$\sqrt{2}$是4a和2b的等比中项,则$\frac{2}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

同步练习册答案