精英家教网 > 高中数学 > 题目详情
11.四棱锥P-ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是(  )
A.6B.5C.$\frac{9}{2}$D.$\frac{9}{4}$

分析 由球的球心在四棱锥P-的高上,把空间问题平面化,
作出过正四棱锥的高作组合体的轴截面,利用平面几何知识即可求出高.

解答 解:由题意,四棱锥P-ABCD是正四棱锥,球的球心O在四棱锥的高PH上;
过正四棱锥的高作组合体的轴截面如图所示:
其中PE,PF是斜高,A为球面与侧面的切点,
设PH=h,由几何体可知,RT△PAO∽RT△PHF,
∴$\frac{OA}{FH}$=$\frac{PO}{PF}$,即$\frac{1}{3}$=$\frac{h-1}{\sqrt{{h}^{2}{+3}^{2}}}$,
解得h=$\frac{9}{4}$.
故选:D.

点评 本题主要考查了球内切多面体、几何体的结构特征,把空间问题平面化,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设a=log25,b=log26,$c={9^{\frac{1}{2}}}$,则(  )
A.c>b>aB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对任意的正整数n,以及任意n个互不相同的正整数a1,a2,…,an,若不等式${({\frac{1}{a_1}})^λ}+{({\frac{1}{a_2}})^λ}+…+{({\frac{1}{a_n}})^λ}<2$恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四边形ABCD和BCGE均为直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求证:AG∥平面BDE;
(2)求三棱锥G-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)的定义域为R,且f(2)=2,又函数f(x)的导函数y=f′(x)的图象如图所示,若两个正数a、b满足f(2a+b)<2,则$\frac{b+2}{a+2}$的取值范围是(  )
A.($\frac{2}{3}$,2)B.(-∞,$\frac{2}{3}$)∪(2,+∞)C.(2,+∞)D.(-∞,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x+1|.
(1)求不等式|2x+1|-f(x)<1的解集;
(2)若关于x的不等式f(x)≥|a-x|+2的解集为非空集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2-4x+4的零点是(  )
A.(0,2)B.(2,0)C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(Ⅰ)求证:AF∥平面BCE;
(II)求证:AC⊥平面BCE; 
(Ⅲ)求二面角F-BC-D平面角的余弦值.

查看答案和解析>>

同步练习册答案