分析 (1)对q分类讨论,利用等比数列的通项公式及其前n项和公式即可得出.
(2)利用等比数列的通项公式即可得出.
解答 解:(1)设等比数列{an}的公比为q,∵a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
∴q=1满足条件,当q≠1时,$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=\frac{3}{2}}\\{\frac{{a}_{1}({q}^{3}-1)}{q-1}=\frac{9}{2}}\end{array}\right.$,解得a1=6,q=-$\frac{1}{2}$.
(2)由(1)可得:q=1时,an=$\frac{3}{2}$;
q≠1时,an=$6×(-\frac{1}{2})^{n-1}$.
点评 本题考查了等比数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{3}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\frac{1}{5}$ | B. | 4$\frac{2}{5}$ | C. | 4$\frac{3}{5}$ | D. | 4$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 该命题对于n>2的自然数n都成立 | B. | 该命题对于所有的正偶数都成立 | ||
| C. | 该命题何时成立与k取值无关 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{e}^{2}}$<x1x2<$\frac{1}{e}$ | B. | $\frac{1}{{e}^{2}}$<x1x2<1 | C. | $\frac{1}{e}$<x1x2<1 | D. | e<x1x2<e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com