精英家教网 > 高中数学 > 题目详情

【题目】某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:

(1)求直方图中的值;

(2)根据频率分布直方图估计样本数据的众数、中位数各是多少(结果保留整数);

(3)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,试计算数据落在上的概率.

(参考数据:若,则,

【答案】(1)0.033(2)200(3)0.6827

【解析】分析:(1)根据频率分布直方图即可求出的值,
(2)根据频率分布直方图即可估计样本数据的众数、中位数;
(3)根据正态分布的定义即可求出答案.

详解:

(1)由已知得

解得

(2) 众数=

由前三组频率之和

前四组频率之和为

故中位数位于第四组内,

中位数估计为

(3)因为从而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是一正方体的表面展开图.都是所在棱的中点.则在原正方体中:①异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某种书籍每册的成本费(元)与印刷册数(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

表中.

为了预测印刷20千册时每册的成本费,建立了两个回归模型:.

(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)

(2)根据所给数据和(1)中选择的模型,求关于的回归方程,并预测印刷20千册时每册的成本费.

附:对于一组数据,…,,其回归方程的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,对任意满足,且,数列满足,其前9项和为63.

(1)求数列的通项公式;

(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;

(3)将数列的项按照为奇数时,放在前面;当为偶数时,放在前面的要求进行交叉排列,得到一个新的数列:,求这个新数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,解不等式

(2)若不等式恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An , 第n项之后各项an+1 , an+2…的最小值记为Bn , dn=An﹣Bn
(1)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N* , an+4=an),写出d1 , d2 , d3 , d4的值;
(2)设d是非负整数,证明:dn=﹣d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(写出所有正确命题的编号).
①当0<CQ< 时,S为四边形
②当CQ= 时,S为等腰梯形
③当CQ= 时,S与C1D1的交点R满足C1R=
④当 <CQ<1时,S为六边形
⑤当CQ=1时,S的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,现给出如下结论:

.

其中正确结论的序号为(

A. ②③ B. ①④ C. ②④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.

写出关于的函数关系式;

应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)

查看答案和解析>>

同步练习册答案