精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以tt >0)为半径的圆分别与曲线Gy轴的正半轴相交于点A与点B.直线ABx轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;
(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.
(Ⅰ)
(Ⅱ)证明见解析
解:(Ⅰ)由题意知,

因为,所以
由于,故有. (1)
由点的坐标知,
直线的方程为
又因点在直线上,故有
将(1)代入上式,得
解得
(Ⅱ)因为,所以直线的斜率为

所以直线的斜率为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
已知三点

(Ⅰ)求以为焦点且过点P的椭圆的标准方程;
(Ⅱ)设点关于直线的对称点分别为,求以为焦点且过点的双曲线的标准方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.
(1) 当t变化时,求点P的轨迹方程;
(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,
求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13 分)
已知椭圆的右焦点F 与抛物线y2 =" 4x" 的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F 的直线与椭圆相交于A、B 两点,点C 在右准线l上,BC//x 轴.
(1)求椭圆的标准方程,并指出其离心率;
(2)求证:线段EF被直线AC 平分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆的离心率为,点,0),(0,),原点到直线的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于不同两点,经过线段上点的直线与轴相交于点,且有,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.

(Ⅰ)求双曲线的方程;
(Ⅱ)以为圆心的圆与双曲线的一条渐近线相切,
.已知点,过点作互相垂
直且分别与圆、圆相交的直线,设被圆
得的弦长为被圆截得的弦长为是否为定值?
请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三角形的一个内角,且,则方程所表示的曲线是(  )
A.焦点在轴上的双曲线B.焦点在轴上的双曲线
C.焦点在轴上的椭圆D.焦点在轴上的椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点P的横坐标x,纵坐标y使lgy,lg|x|,成等差数列,则点P的轨迹图形为(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与椭圆为参数)有公共点,则圆的半径的取值范围是

查看答案和解析>>

同步练习册答案