精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow a,\overrightarrow b$满足:$|{\overrightarrow a}|=|{\overrightarrow a+\overrightarrow b}|=1$,$|{\overrightarrow b}|=2$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为180°.

分析 把已知式子平方代入数据可得向量夹角的余弦值,可得向量的夹角.

解答 解:∵$|{\overrightarrow a}|=|{\overrightarrow a+\overrightarrow b}|=1$,$|{\overrightarrow b}|=2$,
∴${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$=1,
∴1+4+2×1×2×cosθ=1,
解得cosθ=-1
∴向量$\overrightarrow a$与$\overrightarrow b$的夹角θ=180°
故答案为:180°

点评 本题考查平面向量的夹角,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.焦点在x轴上,对称轴为两坐标轴的椭圆短轴长为4,该椭圆截直线x+2y=4所得的弦长为2$\sqrt{5}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数):曲线C的极坐标方程为:ρ=2cosθ
(1)求直线l和曲线C的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=m•9x-3x,若存在非零实数x0,使得f(-x0)=f(x0)成立,则实数m的取值范围是(  )
A.m≥$\frac{1}{2}$B.m≥2C.0<m<2D.0<m<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通项公式;
(2)设bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求实数λ的取值范围.
(3)设Cn=$\frac{{({2-{S_n}})}}{n(n+1)},n∈{N^*}$,Tn是数列{Cn}的前n项和,证明$\frac{3}{4}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系中,i,j分别是与x,y轴正方向同向的单位向量,平面内三点A、B、C满足,$\overrightarrow{AB}$=4$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{AC}$=k$\overrightarrow{i}$-$\frac{1}{2}$$\overrightarrow{j}$当A、B、C三点构成直角三角形时,实数k的可能值的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,已知a2=2,a5=16.
(1)求数列{an}的通项公式;
(2)若数列{bn}是首项为1,公差为1的等差数列,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a,b,c,d为正数,a+b+c+d=1,求a2+b2+c2+d2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{m}$=1的焦距为6,则m的值为(  )
A.32B.5C.8D.-5

查看答案和解析>>

同步练习册答案