精英家教网 > 高中数学 > 题目详情
已知函数上是增函数,
(1)求实数的取值集合
(2)当取值集合中的最小值时,定义数列;满足,求数列的通项公式;
(3)若,数列的前项和为,求证:.
(1);(2);(3)详见解析

试题分析:(1)函数在区间是增函数,说明恒成立,再参变分离确定的取值集合
(2)由(1)知,表示,代入中,得关于的递推式,再根据递推公式求通项公式,常见的根据递推公式求通项公式的方法有:①,用累积法;②,用累加法;③(p,q是常数),用构造法;④(p,q,m是常数),用两边取倒数,再用构造法,该题,用③求;(3)首先求数列的通项公式,再根据通项公式的具体形式,选择合适的求和方法,常见的求和方法有①直接法,直接利用等比数列或等差数列前n项和公式;②裂项相消法,在求和的过程中互相抵消的办法;③错位相减法,适合于通项公式是等差数列乘以等比数列的类型;④分组求和法,分组分别求和再相加的办法;⑤奇偶并项求和法,研究奇数项和偶数项的特点来求和的办法,该题,利用③④结合起来求和,再证明不等式成立.
试题解析:(1) 因为函数上是增函数,只需满足恒成立,即,所以
(2)由(1)知,因为,∴,且,所以,∴,∴是以2为首项,3为公比的等比数列,故
(3)由(2)知,令
,两式相减得,故.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

己知函数 .
(I)求的极大值和极小值;
(II)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为函数图象上一点,为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)图像在x=1处的切线的方程;
(Ⅱ)若的极大值和极小值分别为m,n,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线相切于点,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当a>0时,函数的图象大致是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线经过点,则    ______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数处取得极大值,在处取得最小值,满足,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案