精英家教网 > 高中数学 > 题目详情
已知圆M:x2+y2-2x-2y-2=0,直线L过点P(2,3)且与圆M交于A,B两点,且|AB|=2
3
,求直线L的方程.
考点:直线与圆的位置关系
专题:直线与圆
分析:分斜率存在和斜率不存在两种情况,分别由条件利用点到直线的距离公式,弦长公式求出斜率,可得直线L的方程.
解答: 解:当直线L的斜率存在时,设直线L的方程为y-3=k(x-2),即kx-y+3-2k=0,
作MC⊥AB于C,在直角三角形MBC中,BC=
3
,MB=2,
所以MC=1,又因为MC=
|k-1+3-2k|
k2+1
=1,
解得k=
3
4
,所以直线方程为3x-4y+6=0.
当直线斜率不存在时,其方程为x=2,圆心到此直线的距离也为1,
所以也符合题意,
综上可知,直线L的方程为3x-4y+6=0或x=2.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}中,a1=2,an+1=an+n+1,则通项an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,A=60°,a=
6
,b=
2
,求边长c和角B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R
(1)画函数y=f(x)在区间[-
π
2
π
2
]上的图象.
(2)函数f(x)的图象可由函数y=
2
sin2x,x∈R的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)当a=x时,求函数g(x)的单调区间;
(2)若f(x)存在极值点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的参数方程为
x=4cosθ
y=4sinθ
(θ为参数),直线l经过点P(2,2),倾斜角α=
π
3

(1)写出圆的标准方程和直线l的参数方程;
(2)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足an+1=Sn+n+1(n∈N*),且a2,a3+2,a4成等差数列.
(1)求a1
(2)求数列{an}的通项公式;
(3)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…
an
an+1
n
2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)当a>0时,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,且函数g(x)=
1
2
x2+nx+mf′(x)(m,n∈R)当且仅当在x=1处取得极值,其中f′(x)为f(x)的导函数,求m的取值范围;
(3)若函数y=f(x)在区间(
1
3
,3)内的图象上存在两点,使得在该两点处的切线相互垂直,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD,则
AB
CD
+
AC
DB
+
AD
BC
=
 

查看答案和解析>>

同步练习册答案