分析 由直角三角形的余弦函数可得cosA,再由向量的加减运算和向量的数量积的定义和性质,向量的平方即为模的平方,计算即可得到所求值.
解答 解:在△ABC中,∠C=90°,AB=3,AC=1,
可得cosA=$\frac{AC}{AB}$=$\frac{1}{3}$,
由$\overrightarrow{AC}$=2$\overrightarrow{BD}$-$\overrightarrow{CB}$,可得
$\overrightarrow{AC}$+$\overrightarrow{CB}$=2$\overrightarrow{BD}$,即$\overrightarrow{AB}$=2$\overrightarrow{BD}$,
即为$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$,
则$\overrightarrow{CD}$•$\overrightarrow{CB}$=($\overrightarrow{AD}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=($\frac{3}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{3}{2}$$\overrightarrow{AB}$2+$\overrightarrow{AC}$2-$\frac{5}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=
$\frac{3}{2}$×9+1-$\frac{5}{2}$×3×1×$\frac{1}{3}$=12.
故答案为:12.
点评 本题考查向量的数量积的定义和性质,注意运用向量的平方即为模的平方,以及共线向量定理的运用,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{3}$ | C. | 3+$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (π,π) | B. | (3π,-π) | C. | (5π,-π) | D. | (7π,-π) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在$(-\frac{π}{4},\frac{π}{4})$单调递增 | B. | f(x)在$(-\frac{π}{4},\frac{π}{4})$单调递减 | ||
| C. | f(x)在$(0,\frac{π}{2})$单调递增 | D. | f(x)在$(0,\frac{π}{2})$单调递减 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com