精英家教网 > 高中数学 > 题目详情
11.在4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选三人中女生的人数,求X的分布列.

分析 由已知得X有可能取值为0,1,2,由题意知X服从超几何分布,分别求出相应的概率,由此能求出X的分布列.

解答 解:由已知得X有可能取值为0,1,2,
由题意知X服从超几何分布,
∴P(X=0)=$\frac{{C}_{2}^{0}{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴X的分布列为:

 X0 1 2
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$

点评 本题考查离散型随机变量的分布列的求法,是基础题,解题时要认真审题,注意超几何分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(2,1).
(1)求与$\overrightarrow{a}$平行的单位向量的坐标;
(2)求与$\overrightarrow{a}$垂直的单位向量的坐标;
(3)若|$\overrightarrow{b}$|=2$\sqrt{5}$,且与$\overrightarrow{a}$的夹角为$\frac{2π}{3}$,求$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.长江两岸之间没有大桥的地方,常常通过轮渡进行运输,如图所示,一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.
(1)试用向量表示江水速度、船速以及船实际航行的速度
(2)求船实际航行的速度的大小(保留两个有效数字)与方向(用与江水速度间的夹角表示,精确到度)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一扇形如图所示,OA⊥OB,OA=OB=1,P为$\widehat{AB}$上一动A点,则$\overrightarrow{AP}$$•\overrightarrow{BP}+|\overrightarrow{OA}+\overrightarrow{OB}|$的取值范围为[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{OA}$=(λsinα,λcosα)(λ≠0),$\overrightarrow{OB}$=(cosβ,sinβ),且α+β=$\frac{π}{3}$.
(1)求|$\overrightarrow{AB}$|的最小值;
(2)求$\overrightarrow{OA},\overrightarrow{OB}$的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}中,a2,a3,a5成等比数列,a1+a2=1,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an+${2}^{{a}_{n}}$,n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)(x∈R)的图象如图所示,则g(x)=f(logax)(0<a<1)的单调递减区间为[$\sqrt{a}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an},若a1=3,a2=5,且满足an+1-an=2n
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,证明:Tn<$\frac{1}{6}$;
(3)证明:对任意给定的m∈(0,$\frac{1}{6}$),均存在n0∈N*,使得当n≥n0时,(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知f(x)=2x2+x一1.求f(x+1)
(2)如果函数f(x)满足f(x+1)=2x2+1.求f(x).

查看答案和解析>>

同步练习册答案