分析 由已知得X有可能取值为0,1,2,由题意知X服从超几何分布,分别求出相应的概率,由此能求出X的分布列.
解答 解:由已知得X有可能取值为0,1,2,
由题意知X服从超几何分布,
∴P(X=0)=$\frac{{C}_{2}^{0}{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴X的分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题考查离散型随机变量的分布列的求法,是基础题,解题时要认真审题,注意超几何分布的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com