精英家教网 > 高中数学 > 题目详情
设f(x)=x3+ax2+bx+1的导数f'(x)满足f'(1)= 2a,f'(2)=-b,其中常数a,b∈R。
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f'(x)e-x,求函数g(x)的极值。
解:(1)因 f(x)=x3+ax2+bx+1,故f'(x)=3x2+2ax+b
令x=1,得f'(1)=3+2a+b,由已知f'(1) =2a,
因此3+2a+b =2a,解得b=-3
又令x=2,得f'(2)=12+4a+b,由已知f'(2)=-b,
因此12+ 4a+b=-b,解得
因此
从而
又因为
故曲线y=f(x)在点(1,f(1)) 处的切线方程为
,即6x+2y-1=0。
(2)由(1)知g(x)=(3x2-3x-3)e-x
从而有g'(x)=(-3x2+9x)e-x
令g'(x)=0,得-3x2+9x=0,解得x1=0,x2=3
当x∈(-∞,0)时,g'(x)<0,故g(x)在(-∞,0)上为减函数;
当x∈(0,3)时,g'(x)>0,故g(x)在(0,3)上为增函数;
当x∈(3,+∞)时,g'(x)<0,故g(x)在(3,+∞)上为减函数;
从而函数g(x)在x1=0处取得极小值g(0)=-3,
在x2=3处取得极大值g(3)=15e-3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x3-a,x∈[0,+∞),设x1>0,记曲线y=f(x)在点M(x1,f(x1))处的切线l.
(1)求l的方程;
(2)设l与x轴的交点是(x2,0),证明x2a
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3(x∈R),若0≤θ<
π
2
时,f(m•sinθ)+f(2-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f′(x)=0有且只有一个相同的实根.
(2)f(x)=0和f′(x)=0有且只有一个相同的实根.
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根.
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
x22
-2x+a,
(1)求函数f(x)的单调递增、递减区间;
(2)若函数f(x)在区间[-1,2]上的最大值与最小值的和为5,求实数a的值.

查看答案和解析>>

同步练习册答案