精英家教网 > 高中数学 > 题目详情
3.已知抛物线y2=16x的焦点与双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}$=1(a>0)的一个焦点重合,则双曲线的渐近线方程是$y=±\sqrt{3}x$.

分析 先根据抛物线方程求得抛物线的焦点,进而可知双曲线的一个焦点,求出a,即可求出双曲线的渐近线方程.

解答 解:∵抛物线y2=16x的焦点为(4,0),
∴双曲线的一个焦点为(4,0),
∴a2+12=16,
∴a=2,
∴双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$的渐近线方程是$y=±\sqrt{3}x$.
故答案为:$y=±\sqrt{3}x$.

点评 本题给出抛物线与已知双曲线有公共的焦点,求双曲线的渐近线方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,A(1,3)在双曲线右支上有一点P,求|PA|+|PF1|的最小值.(F1为其左焦点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我们把一系列向量$\overrightarrow{{a}_{i}}$(i=1,2,…,n)按次序排成一列,称之为向量列,记作{$\overrightarrow{{a}_{n}}$}.已知向量列{$\overrightarrow{{a}_{n}}$}满足:$\overrightarrow{{a}_{1}}$=(1,1),$\overrightarrow{{a}_{n}}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2).
(1)证明:数列{|$\overrightarrow{{a}_{n}}$|}是等比数列;
(2)设cn=|$\overrightarrow{{a}_{n}}$|•log2|$\overrightarrow{{a}_{n}}$|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
(3)设θn表示向量$\overrightarrow{{a}_{n-1}}$与$\overrightarrow{{a}_{n}}$间的夹角,若bn=$\frac{{n}^{2}}{π}$θn,对于任意的正整数n,不等式$\sqrt{\frac{1}{{b}_{n+1}}}$+$\sqrt{\frac{1}{{b}_{n+2}}}$+…+$\sqrt{\frac{1}{{b}_{2n}}}$>$\frac{1}{2}$loga(1-2a)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,∠PAB为二面角P-AD-B的平面角.
(1)求证:平面PAB⊥平面ABCD;
(2)若BC⊥平面PAB,求证:AD∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3,过A1、C1、B三点的平面截去长方体的一个角后,得到如下所示的几何体ABCD-A1C1D1
(1)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的大小(结果用反三角函数值表示);
(2)求点D到平面A1BC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E为BC的中点.
(1)求证:ED⊥平面PAD;
(2)求平面PAD与平面PBC所成的锐二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.斜率为$\frac{{\sqrt{2}}}{2}$的直线与焦点在x轴上的椭圆x2+$\frac{y^2}{b^2}$=1(b>0)交于不同的两点P、Q.若点P、Q在x轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个函数中,在闭区间[-1,1]上单调递增的函数是(  )
A.y=x2B.y=2xC.y=log2xD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正实数数列{an}满足:a1=1,a9=7,且an+1=$\frac{({a}_{n}+1)^2-({a}_{n-1}+1)}{{a}_{n-1}+1}$(n∈N+,n≥2)则a5=(  )
A.4B.3C.16D.9

查看答案和解析>>

同步练习册答案