精英家教网 > 高中数学 > 题目详情
13.正实数数列{an}满足:a1=1,a9=7,且an+1=$\frac{({a}_{n}+1)^2-({a}_{n-1}+1)}{{a}_{n-1}+1}$(n∈N+,n≥2)则a5=(  )
A.4B.3C.16D.9

分析 由数列递推式得到数列{an+1}是等比数列,由等比数列的性质结合已知求得答案.

解答 解:由an+1=$\frac{({a}_{n}+1)^2-({a}_{n-1}+1)}{{a}_{n-1}+1}$,得${a}_{n+1}=\frac{({a}_{n}+1)^{2}}{{a}_{n-1}+1}-1$,
即$({a}_{n+1}+1)({a}_{n-1}+1)=({a}_{n}+1)^{2}$(n∈N+,n≥2),
∴数列{an+1}是等比数列,
则$({a}_{5}+1)^{2}=({a}_{1}+1)({a}_{9}+1)=2×8=16$,
∵an>0,∴a5+1=4,则a5=3.
故选:B.

点评 本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=16x的焦点与双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}$=1(a>0)的一个焦点重合,则双曲线的渐近线方程是$y=±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,a3=5,S3=64,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}≤2-\frac{1}{n}$(n≥1,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|2x+1|-|x-3|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)已知关于x的不等式a-3|x-3|<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$tan(\frac{π}{4}+α)=3$,则tanα的值是$\frac{1}{2}$,cos2α的值是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|x-a|-$\frac{4}{x}$+a,x∈[1,6],a∈(1,6).
(Ⅰ)若a∈(1,2],求f(x)的单调区间;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若对任意α∈R,直线l:xcosα+ysinα=2sin(α+$\frac{π}{6}$)+4与圆C:(x-m)2+(y-$\sqrt{3}$m)2=1均无公共点,
则实数m的取值范围是-$\frac{1}{2}$<m<$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tanA+tanB=$\frac{2sinC}{cosA}$.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{c}$+$\frac{c}{a}$=3,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在${(\sqrt{x}+\frac{2}{x^2})^n}(n∈{N^*})$的展开式中,若第五项的系数与第三项的系数之比为56:3,则展开式中的常数项是(  )
A.第2项B.第3项C.第4项D.第5项

查看答案和解析>>

同步练习册答案