精英家教网 > 高中数学 > 题目详情
8.已知$tan(\frac{π}{4}+α)=3$,则tanα的值是$\frac{1}{2}$,cos2α的值是$\frac{3}{5}$.

分析 由两角和与差的正切函数展开已知等式,整理即可求得tanα的值,由万能公式即可求得cos2α的值.

解答 解:∵tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=3,
解得:tanα=$\frac{1}{2}$,
∴cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{3}{5}$.
故答案为:$\frac{1}{2}$,$\frac{3}{5}$.

点评 本题主要考查了两角和与差的正切函数,万能公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3,过A1、C1、B三点的平面截去长方体的一个角后,得到如下所示的几何体ABCD-A1C1D1
(1)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的大小(结果用反三角函数值表示);
(2)求点D到平面A1BC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对具有线性相关关系的变量x,y,测得一组数据如下表,若y与x的回归直线方程为$\hat y=3x-\frac{3}{2}$,则m=4
x0123
y-11m8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足a1=1,|an-an-1|=$\frac{1}{{3}^{n}}$(n∈N,n≥2),且{a2n-1}是递减数列,{a2n}是递增数列,则12a10=(  )
A.6-$\frac{1}{{3}^{10}}$B.6-$\frac{1}{{3}^{9}}$C.11-$\frac{1}{{3}^{10}}$D.11-$\frac{1}{{3}^{9}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,设a>b>c,记x=sinAcosC,y=sinCcosA,z=sinBcosB,试比较x、y、z的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正实数数列{an}满足:a1=1,a9=7,且an+1=$\frac{({a}_{n}+1)^2-({a}_{n-1}+1)}{{a}_{n-1}+1}$(n∈N+,n≥2)则a5=(  )
A.4B.3C.16D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:曲线C的极坐标方程为:ρ=acosθ(a>0),直线l的参数方程为:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$ (t为参数)
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相切,求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个几何体的三视图,若它的体积是$3\sqrt{3}$,则a=$\sqrt{3}$,该几何体的表面积为2$\sqrt{3}$+18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数y=f(x)满足f(x+2)=2f(x),当x∈[0,2]时,$f(x)=\left\{\begin{array}{l}x,x∈[0.1)\\-{x^2}+2x,x∈[1,2]\end{array}\right.$,则函数y=f(x)在[2,4]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案