精英家教网 > 高中数学 > 题目详情

 圆轴正半轴的交点为,与曲线的交点为,直线轴的交点为
(1)用表示
(2)若数列满足 
(1)求常数的值,使得数列成等比数列;
(2)比较的大小.

(1);(2)当时,数列成公比为4的等比数列;当时,数列成公比为2的等比数列.

解析试题分析:本题主要考查曲线与圆相交问题、直线的方程、等比数列的证明、利用导数判断函数的单调性等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,点N代入到曲线和圆中,联立得到,由于直线MN过M、A点,从而得到直线MN的方程,N点也在MN上,代入MN方程中,经整理得到的表达式;第二问,(ⅰ)利用等比数列的定义知为等比数列,利用等比数列的通项公式,经过化简得,利用的通项公式和为等比数列列出2个关系式,利用2个式子是q倍的关系,解出p和q的值;(ⅱ)利用可以猜想,即需要证,构造函数,利用导数判断函数的单调性,从而确定,即,所以
试题解析:(1)与圆交于点,则,即.由题可知,点的坐标为,从而直线的方程为,由点在直线上得,将代入,
 ,
 即              4分
(2)由知,为等比数列,由 知,公比为4,故,所以                     5分
(1) 


 
由等式
对于任意成立,得
 解得                           8分
故当时,数列成公比为4的等比数列;
时,数列成公比为2的等比数列.               9分
(2)由(1)知,当时,;当时, 事实上,令,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(1)设是函数的导函数,求函数在区间上的最小值;
(2)若,函数在区间内有零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足:①在时有极值;②图像过点,且在该点处的切线与直线平行.
(1)求的解析式;
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值,求函数以及的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数,过点P的直线与曲线相切,求的方程;
(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求函数的单调区间;
(2)请问,是否存在实数使上恒成立?若存在,请求实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处都取得极值.
(1)求的值;
(2)设函数,若对任意的,总存在,使得:,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求在区间上的最大值;
(2)若过点存在3条直线与曲线相切,求t的取值范围;
(3)问过点分别存在几条直线与曲线相切?(只需写出结论)

查看答案和解析>>

同步练习册答案