精英家教网 > 高中数学 > 题目详情
2.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,l与直线m:x+3y+6=0相交于N.
(1)当l与m垂直时,求直线l的方程,并判断圆心C与直线l的位置关系;
(2)当|PQ|=2$\sqrt{3}$时,求直线l的方程.

分析 (1)根据直线m的一个法向量为(1,3),求得直线l的一个方向向量,由此求得l的点向式方程,可得直线l过圆心.
(2)由|PQ|=2$\sqrt{3}$得圆心C到直线l的距离d=1,设直线l的方程为x-ny+1=0,求得n的值,可得直线l的方程.

解答 解:(1)因为l与m垂直,直线m的一个法向量为(1,3),
所以直线l的一个方向向量为$\overrightarrow{d}$=(1,3),所以l的方程为$\frac{x+1}{1}=\frac{y}{3}$,即3x-y+3=0.
所以直线l过圆心C(0,3).
(2)由|PQ|=2$\sqrt{3}$,得圆心C到直线l的距离d=1,
设直线l的方程为x-ny+1=0,则由d=$\frac{|1-3n|}{\sqrt{1+{n}^{2}}}$=1.
解得n=0,或n=$\frac{3}{4}$,
所以直线l的方程为x+1=0或4x-3y+4=0.

点评 本题主要考查两条直线垂直的性质,点到直线的距离公式,两个向量坐标形式的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在区间($\frac{π}{4}$,$\frac{π}{2}$)内是增函数,则(  )
A.f($\frac{π}{4}$)=-1B.f(x)的周期为$\frac{π}{2}$C.ω的最大值为4D.f($\frac{3π}{4}$)=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值为-$\frac{5}{2}$,则m等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2lnx-3x2-11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整数a的最小值;
(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=-x3+1+a($\frac{1}{e}$≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.[0,e3-4]B.[0,$\frac{1}{{e}^{3}}$+2]C.[$\frac{1}{{e}^{3}}$+2,e3-4]D.[e3-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果原点到直线FB的距离恰好为实半轴长,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xm-$\frac{2}{x}$且f(4)=$\frac{7}{2}$,
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并用定义证明.
(3)求f(x)在[2,5]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知tanα=$\sqrt{3},π<α<\frac{3π}{2}$,则$cos2α-sin({\frac{π}{2}+α})$=(  )
A.0B.-1C.1D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠ADC=90°,$AD=AB=\frac{1}{2}CD=1$,PA⊥平面ABCD,E为PD中点,且PC⊥AE.
(1)求证:PA=AD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案