精英家教网 > 高中数学 > 题目详情
7.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值为-$\frac{5}{2}$,则m等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

分析 画出约束条件的可行域,利用目标函数的最小值,判断目标函数的最优解,求解a即可.

解答 解:变量x,y满足约束条件的可行域如图,
z=mx-y(m<2)的最小值为-$\frac{5}{2}$,
可知目标函数的最优解过点A,
由$\left\{\begin{array}{l}{y=3}\\{2x-y+2=0}\end{array}\right.$,解得A($\frac{1}{2}$,3),
-$\frac{5}{2}$=$\frac{1}{2}$a-3,解得m=1;
故选:C.

点评 本题考查线性规划的简单应用,判断目标函数的最优解是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,若|AF1|:|AB|=3:4,且F2是AB的一个四等分点,则双曲线C的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{3}sinxcosx-2{cos^2}x-1,x∈R$.
(I)求函数f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的对边分别为a,b,c,已知$c=\sqrt{3},f(C)=0,sinB=2sinA$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知离心率为$\frac{\sqrt{5}}{2}$的双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,M是双曲线C的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若S${\;}_{△OM{F}_{2}}$=16,则双曲线C的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(Ⅰ)用向量$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{DE}$.
(Ⅱ)设AB=6,AC=4,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F1,F2是双曲线的两个焦点,过F2作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠PF1Q=$\frac{π}{2}$,则双曲线的离心率e等于(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$+1C.$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,点B是虚轴上的一个顶点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,且|$\overrightarrow{BF}$|=4,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P、Q两点,l与直线m:x+3y+6=0相交于N.
(1)当l与m垂直时,求直线l的方程,并判断圆心C与直线l的位置关系;
(2)当|PQ|=2$\sqrt{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=$\sqrt{3},SB=2\sqrt{2}$.
(1)证明:面SBC⊥面SAC;
(2)求点A到平面SCB的距离;
(3)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

同步练习册答案