精英家教网 > 高中数学 > 题目详情
12.已知F1,F2是双曲线的两个焦点,过F2作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠PF1Q=$\frac{π}{2}$,则双曲线的离心率e等于(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$+1C.$\sqrt{2}$D.$\sqrt{2}$-1

分析 根据题设条件我们知道|PQ|=$\frac{2{b}^{2}}{a}$,|F1F2|=2c,|QF1|=$\frac{{b}^{2}}{a}$,因为∠PF2Q=90°,则2($\frac{{b}^{4}}{{a}^{2}}$+4c2)=$\frac{4{b}^{4}}{{a}^{2}}$,据此可以推导出双曲线的离心率.

解答 解:由题意可知通径|PQ|=$\frac{2{b}^{2}}{a}$,|F1F2|=2c,|QF1|=$\frac{{b}^{2}}{a}$,
∵∠PF2Q=90°,∴2($\frac{{b}^{4}}{{a}^{2}}$+4c2)=$\frac{4{b}^{4}}{{a}^{2}}$,∴b4=4a2c2
∵c2=a2+b2,∴c4-6a2c2+a4=0,∴e4-6e2+1=0
∴e2=3+2$\sqrt{2}$或e2=3-2$\sqrt{2}$(舍去)
∴e=$\sqrt{2}$+1.
故选B.

点评 本题主要考查了双曲线的简单性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.统计某产品的广告费用x与销售额y的一组数据如表:
广告费用x2356
销售额y7m912
若根据如表提供的数据用最小二乘法可求得y对x的回归直线方程是$\stackrel{∧}{y}$=1.1x+4.6,则数据中的m的值应该是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,b=sin(A+C),cos(A-C)+cosB=$\sqrt{3}$c.
(1)求角A的大小;
(2)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$),则f(x)的单调递增区间为(  )
A.(kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈ZB.(kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈ZD.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值为-$\frac{5}{2}$,则m等于(  )
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x(x-2)=0},B={x∈Z|4x2-9≤0},则A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2lnx-3x2-11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整数a的最小值;
(3)若正实数x1,x2满足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,证明:x1+x2≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果原点到直线FB的距离恰好为实半轴长,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,则目标函数z=2y-x的最大值为(  )
A.14B.13C.12D.11

查看答案和解析>>

同步练习册答案