【题目】如图,在四棱锥中,底面为矩形,平面,,为的中点,是线段上的一动点.
(1)当是线段的中点时,证明:平面;
(2)当求二面角的大小.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线与圆C相切,圆心C的坐标为
(1)求圆C的方程;
(2)设直线y=x+m与圆C交于M、N两点.
①若,求m的取值范围;
②若OM⊥ON,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知和是椭圆的两个焦点,且点在椭圆C上.
(1)求椭圆C的方程;
(2)直线(m>0)与椭圆C有且仅有一个公共点,且与x轴和y轴分别交于点M,N,当△OMN面积取最小值时,求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和,对任意正整数,总存在正数使得, 恒成立:数列的前项和,且对任意正整数, 恒成立.
(1)求常数的值;
(2)证明数列为等差数列;
(3)若,记 ,是否存在正整数,使得对任意正整数, 恒成立,若存在,求正整数的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,若满足条件:存在区间,使在上的值域为,则称为“不动函数”.
(1)求证:函数是“不动函数”;
(2)若函数是“不动函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com